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Outline

• The group equivalence and the projection problems for curves and the
relationship between them.

• The equivalence problem for smooth parametrized curves under the group
of rotations and translations (SE(2)-group).
– The Frenét frame and the curvature.

– The solution based on differential signature.

• The differential signature in the case of other groups.

• The differential signature of algebraic curves.

• The integral signatures and their numerical approximations.

• The projection problem revisited: relationship between invariants of an
object and its image.
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The group equivalence and the projection problems

and the relationship between them.
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The group-equivalence problem for planar curves

G - a group acting on the affine or projective plane (R2, PR2, C2 or PC2).

Gy plane⇒ Gy { planar curves }.

Definition: Two curves X1 and X2 are G-equivalent (or G-congruent)

X1
∼=
G
X2

if

∃g ∈ G : X1 = g ·X2.

The G-equivalence problem:

• Given X1, X2 and G decide whether or not X1
∼=
G
X2.

• Describe equivalence classes of curves.
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Examples of groups and their actions: (x, y) 7→ (x̄, ȳ)

E(2)=Euclidean group acts by rotations, translations, reflections:

x̄ = cos(φ)x− sin(φ)y + a, ȳ = ε(sin(φ)x+ cos(φ)y) + b

a, b, φ ∈ R, ε = ±1

If ε = 1, then SE(2)= special Euclidean group

A(2)=Affine group acts by invertible linear transformations and translations:

x̄ = αx+ β y + a, ȳ = γ x+ δ y + b

α, β, γ, δ ∈ R, αδ − βγ 6= 0

If αδ − βγ = 1, then SA(2)= special affine (or equi-affine) group
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PGL(3)=Projective group= GL(3)\{λI} acts by linear fractional
transformations:

x̄ = αx+β y+a
ν x+µ y+c , ȳ = γ x+δ y+b

ν x+µ y+c , det

 α β a
γ δ b
ν µ c

 6= 0

Problem: [M. Berger, Geometry II, 1987)] Locate four points on each of the following
photograph, transfer them to a blank sheet of paper, and verify that the two sets
of points cannot be mapped one to another by an affine transformation. They
can be mapped to each other by a projective transformation on the plane .
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Example of equivalence and non-equivalence:

X1 = {(x, y) |x3 + y3 − 10xy = 0} and X2 = {(x, y) | y3 − xy + 1 = 0}

X1 �
E(2)

X2

and

X1 �
A(2)

X2

but

X1
∼=

PGL(3)
X2, with X2 = g·X1,

where

(x̄, ȳ) = g · (x, y) =

(
10

y
,
x

y

)
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Projections:

P : P3 → P2

 x
y
w

 =

 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



z1
z2
z3
z4


rankP = 3

12 parameters pij, equivalent up to scaling by a nonzero constant pij → λpij.

The center is the kernel of P .
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Projection (or object-image correspondence) problem for curves

Given a curve Z ⊂ P3 and a plane curve X ⊂ P2,

decide whether there exists P : Z → X, such that X = PZ
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Finite cameras, or central projection (the left 3 × 3 submatrix of P is non-
singular):
P : (z1, z2, z3) 7→ (x, y).

[Image from the Wikipedia]

x =
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,

y =
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34
.

11 degrees of freedom:

• location of the center (3 degrees of freedom);

• position of the image plane (3 degrees of freedom);

• choice of affine coordinates on the image plane up to overall scaling (5
degrees of freedom).
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If the center of the projection is at ∞, then we have a parallel projection (the
last row of P is (0,0,0,1))

x = p11 z1 + p12 z2 + p13 z3 + p14,

y = p21 z1 + p22 z2 + p23 z3 + p24.
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Relationship between the projection and the group-equivalence problems.
[Burdis, Hong and IK (2013)]

Proposition: Given Z ⊂ R3 and X ⊂ R2,

∃ a central projection P : Z → X

m

∃ c1, c2, c3 ∈ R such that X is PGL(3)-equivalent to a planar curve:

Zc =

{(
z1 − c1
z3 − c3

,
z2 − c2
z3 − c3

) ∣∣∣(z1, z2, z3) ∈ Z
}

c = (c1, c2, c3) is the center of the projection.

Proof: P = AP0B , where A is the left 3× 3 submatrix of P ,

P0 :=

 1 0 0 0
0 1 0 0
0 0 1 0

 and B :=


1 0 0 −c1
0 1 0 −c2
0 0 1 −c3
0 0 0 1


12



The central projection problem can be reduced to a

a PGL(3)-group-equivalence problem with 3 parameters .

Similarly, the parallel projection problem can be reduced to a

a A(2)-group-equivalence problem with 2 parameters .

⇒ algorithms for solving the projection problem.
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The equivalence problem

starting with smooth parameterized curves under the SE(2)-
action
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Euclidean Curvature:

y

P

N

T

x

----------------------
θ

• γ(t) = (x(t), y(t)) at least C2-smooth
immersed curve.

• γ′(t) = (x′(t), y′(t))

• |γ′(t)| =
√
x′(t)2 + y′(t)2.

• T = 1
|γ ′|γ

′ = (cos θ, sin θ)

• θ is the signed angle between the x-axis and
T .

• N = 1
|γ ′| (−y

′, x′) = (− sin θ, cos θ)

• The arc-length parameter s(t) =
∫ t
t0
|γ′(τ)|dτ

• Infinitesimal arc-length ds = |γ′(t)|dt .

• The arc-length derivative d
ds = 1

|γ′(t)|
d
dt .

• The signed Euclidean curvature

κ = dθ
ds = det(γ′(t),γ′′(t))

|γ′(t)|3 = x′(t)y′′(t)−y′(t)x′′(t)

(x′(t)2+y′(t)2)
3
2
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Equivariant moving frames and invariants:

y

x

N

T

~P

N

T P

~

~

• g ∈ SE(2) = SO(2) n R2

• X̃ = g ·X, P̃ = g · P

• T,N are equivariant:
T̃ = g · T, Ñ = g ·N

• κ is invariant: κX̃(P̃ ) = κX(P )

• Frenét equation (Frenét thesis 1847) dT
ds

= κN .

• [T,N ] ∈ SO(2), P ∈ R2 =⇒ (T,N, P ) ∈ SE(2)

• we have an equivariant map from {jets of curves} → SE(2).

• general definition of an equivariant moving frame map [ by Fels and Olver, 1999] ⇒ a
wide range of applications.
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• Frenét equations:

 dT
ds
dN
ds
dP
ds

 =

 0 κ 0
−κ 0 0
1 0 0

 T
N
P



• For sufficiently smooth curves,

κs = dκ
ds
, κss = d2κ

ds2 , κsss, . . . - are higher order invariants.

• Any differential invariants, i. e. smooth invariant functions built from x, y, xt, yt, xtt, ytt, . . .
is a function of those.

A function Rm → Rn is C0-smooth if it is continuous, Ck-smooth if all its (partial) derivatives up

to order k are continuous, C∞-smooth if the derivatives of any order are continuous, and Cω if

it is analytic.

16



Reconstructing a curve from its curvature:

Proposition: ∀ continuous κ : R → R, ∃! curve X ⊂ R2 with a C2-smooth
arc-length parameterization γ : R → R2, such that γ(0) = (0,0), γ′(0) =

[1,0]T , and κ(s) is the curvature of X at the point γ(s).

Proof:

• κ = dθ
ds =⇒ θ(s) =

∫ s
0κ(τ)dτ .

• dγ
ds = (cos θ, sin θ) =⇒ γ(s) = (

∫ s
0 cos θ(τ)dτ,

∫ s
0 sin θ(τ)dτ)

17



Congruence in terms of curvature:

Proposition:Let γ1 and γ2 be arc-length parameterizations of curves X1 and
X2 and κ1, κ2 be the corresponding curvature functions. Then

• ∃c ∈ R, such that κ1(s) = κ2(s+ c) =⇒ X1
∼=

SE(2)
X2.

• ⇐= is true if X1 and X2 are simple.
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Solution based on curvature as a function of the arc-length:

Given two simple planar curves X1 and X2,

1. Compute their arc-length parameterizations γ1(s) and γ2(s);

2. Compute their curvatures κ1(s) and κ2(s);

3. X1
∼=

SE(2)
X2 ⇐⇒ ∃c ∈ R such that κ1(s) = κ2(s+ c)

Drawbacks:

• step 1 - computing the arc-length parameterization is difficult;

• step 3 - to avoid the shift we must match “the initial point”.
19



The differential signature (κ, κs) is a parametrization independent invariant:

Calabi, Olver, Shakiban, Tannenbaum, Haker (1998)

Definition: Let X ⊂ R2 be an immersed, at least C3-smooth curve.

• for a parameterization γ : I ⊂ R → X, a parameterized signature map σγ : I → R2 is
defined by σγ(t) = (κ(t), κs(t)) , where

κ = det(γ ′,γ ′′)
|γ ′|3 and κs = (γ ′·γ ′) det(γ ′,γ ′′′)−3(γ ′·γ ′′) det(γ ′,γ ′′)

|γ ′|6

• the signature (the signature set) of X is the image of this map:

SX = Imσγ;

Proposition:

• SX does not depend on parameterization.

• SX is SE(2) invariant: X1
∼=

SE(2)
X2 =⇒ SX1

= SX2
.

20



Example:

γ1(t) =
(
t3, cos(t3)

)
, γ2(t) = (3

5t−
4
5 cos t, 4

5t+ 3
5 cos t),

t ∈ [0, π
1
3] t ∈ [0, π]

κ(t) = − cos(t3)

(sin2(t3)+1)
3
2

κ(t) = − cos t

(sin2 t+1)
3
2

κs(t) = 2 sin(t3)(cos2(t3)+1)
(sin2(t3)+1)3 κs(t) = 2 sin(t)(cos2 t+1)

(sin2 t+1)3

X1 = Im(γ1) and X2 = Im(γ2)

X1
∼=

SE(2)
X2

The signatures are equal:

SX1
= SX2
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Observations:

• κ ≡ 0 on X ⇐⇒ X is a line (or a line segment) ⇐⇒ SX is a
point (0,0).

• κ ≡ c 6= 0 on X ⇐⇒ X is a circle (or a circular arc) ⇐⇒ SX is
a point (c,0).

• otherwise SX is one-dimensional phase portrait: if γ(s) is an arc-length
parameterization of X, then (κ(s), κ′(s)) is “in-phase” parametrization of
SX .
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A fundamental question:

Do signatures characterize equivalence classes of C3 smooth curves?

Signatures are invariant:

X1
∼=

SE(2)
X2 =⇒ SX1

= SX2

but are they separating?

SX1
= SX2

?
=⇒ X1

∼=
SE(2)

X2 .

Answer: No, unless we put some additional restrictions on a class of curves
we consider, or augment the signature with some additional information.
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Non-congruent curves with the same signatures

I. Non-congruent curve segments

γ1(t) = (t, cos t), t ∈ [0,2π] γ2(t) = (t, sin t+ 2) t ∈ [0,2π],

κ(t) = − cos t

(sin2 t+1)
3
2

κ(t) = − sin t

(cos2 t+1)
3
2

κs(t) = 2 sin t(cos2 t+1)
(sin2 t+1)3 κs(t) = −2 cos t(sin2 t+1)

(cos2 t+1)3

X1 = Im(γ1) and X2 = Im(γ2)

X1 �
SE(2)

X2

The signatures are equal:

SX1
= SX2
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II. Non-congruent closed curves containing straight segments and circular arcs
( degenerate curves .)

The following two curves

share the same signature:

Images are from Hickman (2012)
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Can we construct examples of non-congruent curves, such that:

• whose parametrization defined over R (γ : R→ R2);

• which do not contain segments of constant curvature
( non-degenerate curves )?

In addition we may want them to be

• closed (γ is periodic);

• simple.
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III. Non-congruent non-degenerate closed curves with the same signatures.

Geiger and IK (2020):

• Describe a general mechanism for constructing families of non-congruent
curves with the same signature.

• Introduce the notion of a signature quiver and use it to

– to formulate congruence criteria for non-degenerate curves.

– encode global and local symmetries of curves.

Our results continue the line of research in

• Musso and Nicolodi (2009)

• Hickman (2012)

• Olver (2016)
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Curvature κ1(s). X1 is reconstructed from the
periodic continuation of κ1(s)

Curvature κ2(s). X2 is reconstructed from the
periodic continuation of κ2(s) .
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X1 and X2 are non-congruent, but have the same signature:

More non-congruent curves with the same signature:

X3 has the symmetry group Z3 X4 has the symmetry group Z2.
29



So, what does equality of the signatures SX1
= SX2

imply?

Local congruence: ∀p ∈ X1 such that κs(p) 6= 0, ∃ a curve piece X̂1 ⊂ X1,
p ∈ X̂1, which is SE(2)-congruent to a curve piece X̂2 ⊂ X2. [Calabi, Olver,

Shakiban, Tannenbaum, Haker (1998)]

Global congruence, X1
∼=

SE(2)
X2, when:

• X1 and X2 have analytic parameterizations with domain R;

• X1 and X2 are algebraic;

(We will discuss an adaptation of the differential signature to algebraic curves later)

• X1 and X2 have no vertices [Hoff and Olver, 2013];

• X1 and X2 are non-degenerate closed with simple signatures [Geiger and

IK, 2020].
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Differential signatures for other groups
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Classifying Differential Invariants

Theorem: Let a Lie group G y R2, dimG = r. Consider the induced action
on the set of sufficiently smooth parameterized curves γ(t) = (x(t), y(t)).
Then

• ∃ classifying differential invariants K1 and K2 of orders∗ k and r,
respectively, k < r, s. t. the (K1,K2)-signature can be used to solve
the local equivalence problems for sufficiently regular planar curves under
G-action.

• For most actions† the signature is a phase portrait:

– K1 = κG is the (r − 1)-th order differential invariant, called

G-curvature .

– K2 = dκG
dsG

is the derivative of the G-curvature with respect to the

G-arc-length .

∗The order of a differential invariants is the highest order of the derivatives of γ it depends on.
†See Theorem 5.24, Olver, “Equivalence, Invariance and Symmetries” (1995).
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Curvatures and arc-lengths for SE(2) ⊂ SA(2) ⊂ PGL(3)

G G-curvature G-arc-length

SE(2) κ = x′y′′−y′x′′

(x′2+y′2)
2
3

ds =
√
x′2 + y′2dt

SA(2) µ = 3κ (κss+3κ3)−5κ2
s

9κ8/3 dα = κ1/3ds

PGL(3) η = 6µαααµα−7µ2
αα−9µ2

α µ

6µ
8/3
α

dρ = µ
1/3
α dα

[Inductive and recursive constructions of moving frames and invariants: Kogan (2003), Olver

(2018), Olver and Valiquette (2018)]
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Differential signatures of algebraic curves
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Rational Classifying Differential Invariants

Theorem: [Ruddy, Vinzant and IK (2020)] Let a complex∗ algebraic group G ⊂
PGL(3) y C2, dimG = r. Consider the induced action on the set of
algebraic curves defined by an irreducible polynomial F (x, y) = 0. Then

• ∃ classifying differential invariants K1 and K2, depending rationally on the
derivatives of F of orders k and r, respectively, k < r, such that (K1,K2)-
signature can be used to solve the global G-equivalence problems for
generic algebraic curves.

∗Real case is more subtle.
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In more details:

Let Pd = {F (x, y)|degF ≤ d} such that
(
d+2

2

)
− 2 ≥ dimG. There exists

a Zariski closed subset of Pd, such that for all curves whose defining equation
lies outside of this set:

• the signature map of X , σX = (K1|X ,K2|X): X−− > C2, is a rational
map;

• the signature of X , SX = Im(σX), is

– a point⇐⇒ the symmetry group of X has positive dimension;

– an algebraic curve, whose defining polynomial (in principle) can be
computed by an elimination algorithm;

• σX is generically n : 1, where
n is the cardinality of the symmetry group of X ;

• X1
∼=
G
X2 ⇐⇒ SX1

= SX2
.
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Examples of rational classifying invariants

G SE(2) E(2) SA(2) A(2) PGL(3)

K1 κ2 κ2 µ3 µ2
α
µ3 η3

K2 κs κ2
s µα

µαα
µ2 ηρ

irreducible lines lines and conics
exceptional

In general, K1 and K2 can be computed by
1. Prolongations of group actions.
2. Algorithm for computing a generating set of rational invariants [Derksen

(1999), Hubert and IK (2007), Derksen and Kemper (2015)].
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Are there other classifying pairs?

K̃1 =
aK1 + b

cK1 + d
and K̃2 =

α(K1)K2 + β(K1)

γ(K1)K2 + δ(K1)
,

where

a, b, c, d ∈ C and α, β, γ, δ ∈ C[K1].
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Degree of a signature

Theorem: Signatures of generic curves of degree d have the same degree and
this degree is the upper bound.

G SE(2) E(2) SA(2) A(2) PGL(3)

degSX 6d2 − 6d 12d2 − 12d 24d2 − 48d 24d2 − 48d 96d2 − 216d

Signatures of symmetric curves have much lower degree

Example: Fermat curves Xd, defined by Fd(x, y) = xd + yd + 1 of degree
d > 2, under PGL(3)-action.

• the symmetry group is S3 o (Zd × Zd) of cardinality 6d2;

• the signature of has degree 4 independently of d.
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Its defining polynomial is
49392(d− 2)4d3(d+ 1)4(2d− 1)4K4

2 + 602112(d− 2)4d3(d+ 1)4(2d− 1)4K1K
2
2

+ 10584(d− 2)3d2(d+ 1)3(2d− 1)3
(

10d2 − 3d+ 3
) (

34d2 − 27d+ 27
)
K3

2

+ 1835008(d− 2)4d3(d+ 1)4(2d− 1)4K2
1 − 9289728(d− 2)3d2(d+ 1)3(2d− 1)3

(
d2 − d+ 1

)2
K1K2

+ 61236(d− 2)2d(d+ 1)2(2d− 1)2
(
d2 − d+ 1

) (
10d2 − 3d+ 3

)2 (
16d2 − 9d+ 9

)
K2

2

− 23328(d− 2)2d(d+ 1)2(2d− 1)2
(

11792d8 − 17376d7 + 28152d6 − 24424d5 + 19473d4 − 8940d3

+3358d2 − 324d+ 81
)
K1 + 118098(d− 2)(d+ 1)(2d− 1)

(
d2 − d+ 1

)2 (
10d2 − 3d+ 3

)4
K2

+ 531441d
(
d2 − d+ 1

)3 (
10d2 − 3d+ 3

)4
.
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Integral Invariants
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Example: Signed area between the curve and a secant

γ(t) = (x(t), y(t)) , t ∈ [a, b]

X(t) = x(t)− x(a)

Y (t) = y(t)− y(a)

I[0,1](t) =
∫ t
a Y (τ) dX(τ)− 1

2X(t)Y (t)

Question: With respect to which transformation I[0,1] is invariant ?

Answer: special affine -SA(2) =⇒ special Euclidean - SE(2).
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How to obtain integral invariants for planar curves?

γ(t) = (x(t), y(t)), t ∈ [0,1]

1. Shift starting point to the origin: X(t) = x(t)−x(0), Y (t) = y(t)−y(0),

2. Prolong the action to integral variables:

X[i,j](t) =
∫ t
0 X(τ)i Y (τ)j dX(τ).

3. Fels-Olver m.-f. method⇒ Invariants.
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Examples:

0-th order r =
√
X2 + Y 2 - E(2)-invariant

1-st order I[0,1] = X[0,1] − 1
2X Y -SA(2) and SE(2)-invariant.

2-nd order – I[1,1] = Y X[1,1] − 1
2XX[0,2] − 1

6X
2 Y 2-

SA(2) and E(2)-invariant

– I[0,2] = Y X[0,2] + 2XX[1,1] − 1
3X Y 3 − 2

3X
3 Y

E2-invariant

. . .

[Hann and Hickman (2002) - planar curves; Feng, Krim and IK (2010) - inductive formulas,
space curves]
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Integral signatures for planar curves

• SE(2)-signature
(
r, I[0,1]

)

• E(2)- signatures
(
r,
(
I[0,1]

)2
)

or
(
r, I[1,1]

)
.

• similarity signature:


(
I[0,1]

)2

r4 , I
[1,1]

r4



• SA(2)-signature
(
I[0,1], I[1,1]

)
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Main features of signatures based on integral invariants:

• Stability with respect to noise and high frequency small perturbations.

• Easily derived invariant numerical approximations.

• Dependence on initial point (semi-local).

• Local, independent of initial point, discrete integral signatures can be
defined [Feng, Krim and IK (2010)]
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Stability of integral signature

γ(t) = (t, cos t), γ̃(t) = (t, cos(t) + 1
100 sin(100 t),

t ∈ [0, π] t ∈ [0, π]

Images of γ and γ̃ in R2
SE(2)- signatures for γ and γ̃
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SE(2)-differential signatures for the same curves

γ(t) = (t, cos t), γ̃(t) = (t, cos(t) + 1
100 sin(100 t),

t ∈ [0, π] t ∈ [0, π]
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Numerical approximations:

γ(t) = (x(t), y(t)) , t ∈ [a, b]

X(t) = x(t)− x(a)

Y (t) = y(t)− y(a)

I[0,1](t) =
∫ t
a Y (τ) dX(τ)− 1

2X(t)Y (t)

γ(n) = (x(n), y(n)) , n = 0,1,2, . . .

X(n) = x(n)− x(0)

Y (n) = y(n)− y(0)

I[0,1](n) = 1
2

n∑
i=1

∣∣∣∣∣ Xi Xi−1
Yi Yi−1

∣∣∣∣∣
48



Applications of integral invariants

• Feng, Krim, and IK (2007) (face recognition)

• Golubitsky, Mazalov and Watt (2009) (handwriting recognition)

• Katie Iwancio Ph.D. Thesis, NCSU (2009) (contour-matching)

• Susan Crook Ph.D. Thesis, NCSU (2013) (puzzles, handwriting)
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Returning to the projection problem:

Relations between invariants of an object and its image
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Relations between invariants of an object and its image

Invariants with respect to which group-action on R3? on R2?

• onR3 - standard linear action ofGL(3)(centro-affine invariants) or SL(3)-
action (centro-equi-affine invariants)

• on R2 - projective action (projective invariants)
51



Centro-equi-affine invariants for space curves in terms of the invariants of the
planar images:

Theorem: [Olver and IK (2015)]

Differential algebra of centro-equi-affine invariants of space is generated by:

• η̂ = P ∗0(η)

• ζ = z3 P ∗0

(
1
µ1/3
α

)
• dρ̂ = P ∗0(dρ),

where

• η and dρ are planar projective curvature and arc-length;

• µ and dα are planar equi-affine curvature and arc-length;

• P0 is the standard central projection x = z1

z3
, x = z2

z3
from the origin to the plane z3 = 1:
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Centro-equi-affine curvature, torsion and arc-lengths: [Olver (2010)]

Let Z ⊂ R3 be parametric curve z(t) =
(
z1(t), z2(t), z3(t)

)
, then

• centro-equi-affine arc-lengths dS := |z, ż, z̈| dt (undefined when Z is
contained in the plane spanned by z(0) and ż(0)).

• centro-equi-affine torsion τ = |zS, zSS, zSS| (τ ≡ 0 ⇐⇒ Z is coplanar).

• centro-equi-affine curvature κ = |z, zSS, zSS|

Theorem κ, τ and dS generate differential algebra of centro-affine invariants.
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Relationship between two generating sets:[Olver and IK (2015) ]

• η̂ =
ass a− 7

6
a2
s − 3

2
κ a2

32/3 a8/3
;

• ζ = (3a)−1/3;

• dρ̂ = (3 a)1/3 dS;

where a = κS + 2 τ is identically zero iff P0(Z) is a line or a conic.
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Additional slides
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Warning: κ(t) for an arbitrary parametrization can not be used

to solve the equivalence problem!

Example: Consider two parametrization of y = cos(x), x ∈ [0, π]:

γ(t) = (t, cos t), t ∈ [0, π] and γ̃(t) = (t3, cos(t3)), t ∈ [0, π
1
3].

The corresponding graphs κ(t) = x′y′′−y′x′′

(x′2+y′2)
2
3

are not related by a shift:

The graph of y = cos(x) for x ∈ [0, π]. The graphs of κ(t) for γ(t) and γ̃(t).
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Non-degeneracy and vertices

Definition:

• Let γ(t) be a parameterization of X. Then a point p = γ(t0) is a vertex
if κs(t0) = 0.

• X with a finite set of vertices is called non-degenerate .

Observations:

• Curves containing circular arcs or straight segments are degenerate .

• Under the signature map, vertices are mapped to the horizontal axis.

• Every closed curve has at least 2 vertices and a simple closed curve has
at least 4. Mukhopadhyaya (1909), Kneser (1912), AMS Notices overview DeTurck,

Gluck, Pomerleano, and Shea Vick (2007)
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Theorem. [Musso and Nicolodi (2009)] Any closed phase portrait is the Euclidean
signature of a 1-parameter family of non congruent closed curves.

Families of curves constructed in the proof of this theorem contained at most
one non-degenerate curve.
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