

Irina Kogan

North Carolina State University

http://www.math.ncsu.edu/~iakogan

Max-Planck-Institut für Mathematik in den Naturwissenschaften

August, 11-14, 2020

workshop on Geometry of Curves in Time Series and Shape Analysis

Collaborators

- Joseph Burdis
- Shuo Feng
- Eric Geiger
- Evelyne Hubert
- Hoon Hong
- Hamid Krim
- Peter Olver
- Michael Ruddy
- Cynthia Vinzant

Outline

- The group equivalence and the projection problems for curves and the relationship between them.
- The equivalence problem for smooth parametrized curves under the group of rotations and translations (SE(2)-group).
 - The Frenét frame and the curvature.
 - The solution based on differential signature.
- The differential signature in the case of other groups.
- The differential signature of algebraic curves.
- The integral signatures and their numerical approximations.
- The projection problem revisited: relationship between invariants of an object and its image.

The group equivalence and the projection problems

and the relationship between them.

The group-equivalence problem for planar curves

G - a group acting on the affine or projective plane (\mathbb{R}^2 , \mathbb{PR}^2 , \mathbb{C}^2 or \mathbb{PC}^2).

 $G \curvearrowright \mathsf{plane} \Rightarrow G \curvearrowright \{ \mathsf{planar curves} \}.$

Definition: Two curves X_1 and X_2 are *G*-equivalent (or *G*-congruent)

 $X_1 \stackrel{\simeq}{=} X_2$

if

 $\exists g \in G : X_1 = g \cdot X_2.$

The *G*-equivalence problem:

• Given X_1 , X_2 and G decide whether or not $X_1 \cong_{\overline{G}} X_2$.

• Describe equivalence classes of curves.

Examples of groups and their actions: $(x, y) \mapsto (\bar{x}, \bar{y})$

E(2)=Euclidean group acts by rotations, translations, reflections:

 $\overline{x} = \cos(\phi)x - \sin(\phi)y + a, \qquad \overline{y} = \epsilon(\sin(\phi)x + \cos(\phi)y) + b$

 $a, b, \phi \in \mathbb{R}, \ \epsilon = \pm 1$

If $\epsilon = 1$, then SE(2) = special Euclidean group

A(2)=Affine group acts by invertible linear transformations and translations:

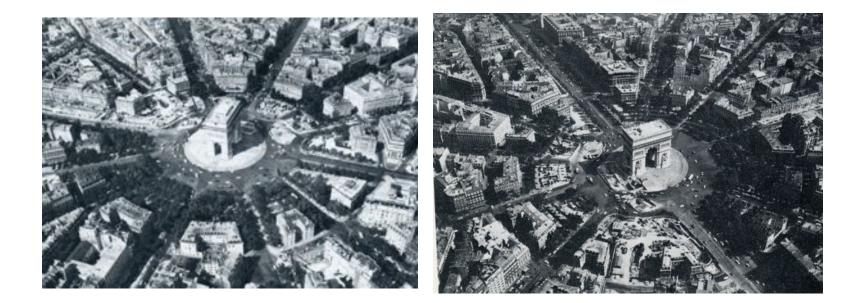
 $\bar{x} = \alpha x + \beta y + a, \qquad \bar{y} = \gamma x + \delta y + b$

 $\alpha, \beta, \gamma, \delta \in \mathbb{R}, \ \alpha \delta - \beta \gamma \neq \mathbf{0}$

If $\alpha\delta - \beta\gamma = 1$, then SA(2)= special affine (or equi-affine) group

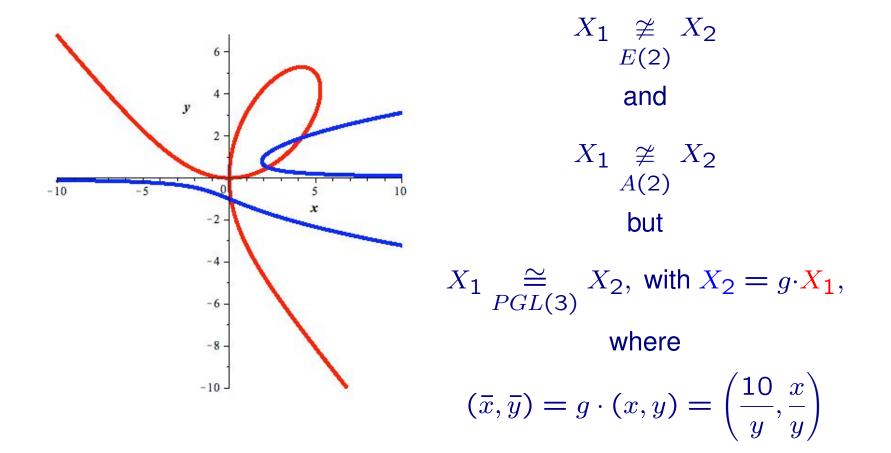
$$PGL(3)$$
=Projective group= $GL(3) \setminus \{\lambda I\}$ actsbylinearfractionaltransformations: $\bar{x} = \frac{\alpha x + \beta y + a}{\nu x + \mu y + c}, \quad \bar{y} = \frac{\gamma x + \delta y + b}{\nu x + \mu y + c}, \quad \det\begin{pmatrix} \alpha & \beta & a \\ \gamma & \delta & b \\ \nu & \mu & c \end{pmatrix} \neq 0$

Problem: [*M. Berger, Geometry II, 1987)]* Locate four points on each of the following photograph, transfer them to a blank sheet of paper, and verify that the two sets of points cannot be mapped one to another by an affine transformation. They can be mapped to each other by a projective transformation on the plane.



Example of equivalence and non-equivalence:

$$X_1 = \{(x,y) | x^3 + y^3 - 10xy = 0\}$$
 and $X_2 = \{(x,y) | y^3 - xy + 1 = 0\}$



Projections:

 $P\colon \mathbb{P}^3 \to \mathbb{P}^2$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$

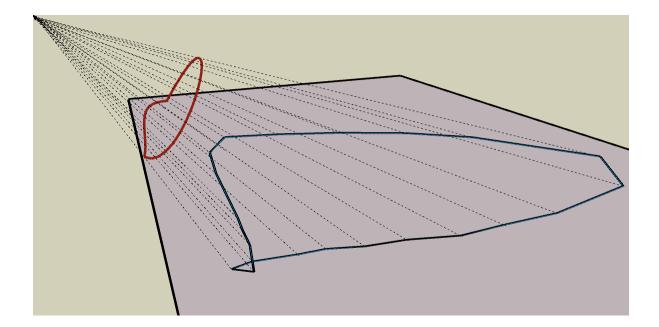
rankP = 3

12 parameters p_{ij} , equivalent up to scaling by a nonzero constant $p_{ij} \rightarrow \lambda p_{ij}$.

The center is the kernel of *P*.

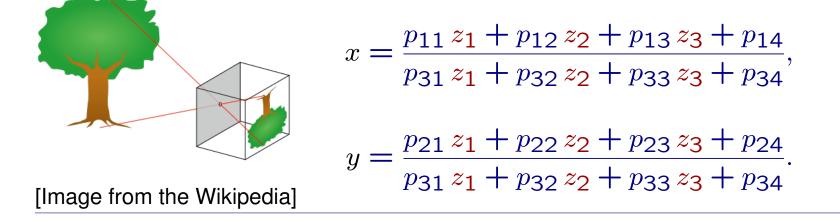
Projection (or object-image correspondence) problem for curves

Given a curve $Z \subset \mathbb{P}^3$ and a plane curve $X \subset \mathbb{P}^2$, decide whether there exists $P \colon Z \to X$, such that X = PZ



Finite cameras, or central projection (the left 3×3 submatrix of *P* is non-singular):

 $P\colon (z_1, z_2, z_3)\mapsto (x, y).$



11 degrees of freedom:

- location of the center (3 degrees of freedom);
- position of the image plane (3 degrees of freedom);
- choice of affine coordinates on the image plane up to overall scaling (5 degrees of freedom).

If the center of the projection is at ∞ , then we have a parallel projection (the last row of *P* is (0, 0, 0, 1))

$$x = p_{11} z_1 + p_{12} z_2 + p_{13} z_3 + p_{14},$$

$$y = p_{21} z_1 + p_{22} z_2 + p_{23} z_3 + p_{24}.$$

Relationship between the projection and the group-equivalence problems. [Burdis, Hong and IK (2013)]

Proposition: Given $\mathbb{Z} \subset \mathbb{R}^3$ and $X \subset \mathbb{R}^2$,

 \exists a central projection $P: \mathbb{Z} \to X$

\uparrow

 $\exists c_1, c_2, c_3 \in \mathbb{R}$ such that X is PGL(3)-equivalent to a planar curve:

$$Z_{c} = \left\{ \begin{pmatrix} z_{1} - c_{1} \\ z_{3} - c_{3} \end{pmatrix}, \frac{z_{2} - c_{2}}{z_{3} - c_{3}} \mid (z_{1}, z_{2}, z_{3}) \in Z \right\}$$

 $c = (c_1, c_2, c_3)$ is the center of the projection.

Proof: $P = AP_0B$, where A is the left 3×3 submatrix of P,

$$P_0 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } B := \begin{pmatrix} 1 & 0 & 0 & -c_1 \\ 0 & 1 & 0 & -c_2 \\ 0 & 0 & 1 & -c_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The central projection problem can be reduced to a

a PGL(3)-group-equivalence problem with 3 parameters.

Similarly, the parallel projection problem can be reduced to a

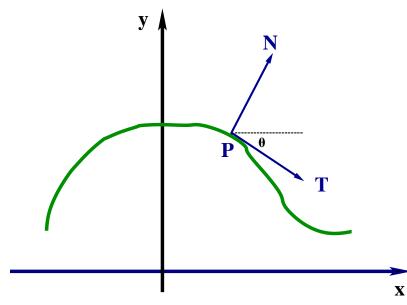
a A(2)-group-equivalence problem with 2 parameters.

 \Rightarrow algorithms for solving the projection problem.

The equivalence problem

starting with smooth parameterized curves under the SE(2)action

Euclidean Curvature:



• $\gamma(t) = (x(t), y(t))$ at least C^2 -smooth immersed curve.

• $\gamma'(t) = (x'(t), y'(t))$

•
$$|\gamma'(t)| = \sqrt{x'(t)^2 + y'(t)^2}.$$

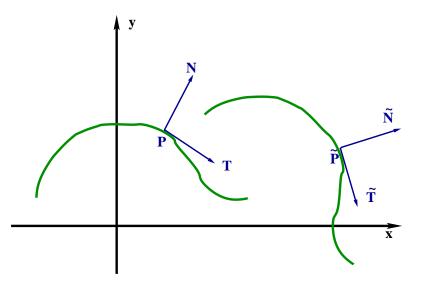
•
$$T = \frac{1}{|\gamma'|} \gamma' = (\cos \theta, \sin \theta)$$

• θ is the signed angle between the x-axis and T.

•
$$N = \frac{1}{|\gamma'|} (-y', x') = (-\sin\theta, \cos\theta)$$

- The arc-length parameter $s(t) = \int_{t_0}^t |\gamma'(\tau)| d\tau$
- Infinitesimal arc-length $ds = |\gamma'(t)|dt$
- The arc-length derivative $\frac{d}{ds} = \frac{1}{|\gamma'(t)|} \frac{d}{dt}$.
- The signed Euclidean curvature $\kappa = \frac{d\theta}{ds} = \frac{\det(\gamma'(t), \gamma''(t))}{|\gamma'(t)|^3} = \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{\frac{3}{2}}}$

Equivariant moving frames and invariants:



•
$$g \in SE(2) = SO(2) \ltimes \mathbb{R}^2$$

•
$$\tilde{X} = g \cdot X, \quad \tilde{P} = g \cdot P$$

• T, N are equivariant: $\tilde{T} = g \cdot T, \quad \tilde{N} = g \cdot N$

•
$$\kappa$$
 is invariant: $\kappa_{\tilde{X}}(\tilde{P}) = \kappa_X(P)$

- Frenét equation (Frenét thesis 1847) $\frac{dT}{ds} = \kappa N$.
- $[T, N] \in SO(2), P \in \mathbb{R}^2 \implies (T, N, P) \in SE(2)$
- we have an equivariant map from {jets of curves} $\rightarrow SE(2)$.
- general definition of an equivariant moving frame map [by Fels and Olver, 1999] ⇒ a wide range of applications.

• Frenét equations:
$$\begin{bmatrix} \frac{dT}{ds} \\ \frac{dN}{ds} \\ \frac{dP}{ds} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ P \end{bmatrix}$$

• For sufficiently smooth curves,

 $\kappa_s = \frac{d\kappa}{ds}, \kappa_{ss} = \frac{d^2\kappa}{ds^2}, \kappa_{sss}, \ldots$ - are higher order invariants.

• Any differential invariants, i. e. smooth invariant functions built from $x, y, x_t, y_t, x_{tt}, y_{tt}, \dots$ is a function of those.

A function $\mathbb{R}^m \to \mathbb{R}^n$ is C^0 -smooth if it is continuous, C^k -smooth if all its (partial) derivatives up to order k are continuous, C^{∞} -smooth if the derivatives of any order are continuous, and C^{ω} if it is analytic. Reconstructing a curve from its curvature:

Proposition: \forall continuous $\kappa \colon \mathbb{R} \to \mathbb{R}$, $\exists !$ curve $X \subset \mathbb{R}^2$ with a C^2 -smooth arc-length parameterization $\gamma \colon \mathbb{R} \to \mathbb{R}^2$, such that $\gamma(0) = (0,0), \gamma'(0) = [1,0]^T$, and $\kappa(s)$ is the curvature of X at the point $\gamma(s)$.

Proof:

•
$$\kappa = \frac{d\theta}{ds} \implies \theta(s) = \int_0^s \kappa(\tau) d\tau.$$

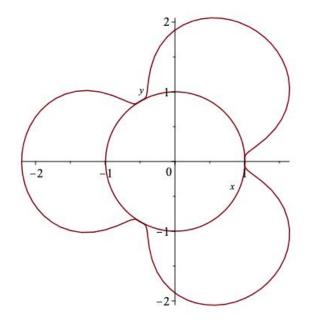
•
$$\frac{d\gamma}{ds} = (\cos\theta, \sin\theta) \implies \gamma(s) = (\int_0^s \cos\theta(\tau) d\tau, \int_0^s \sin\theta(\tau) d\tau)$$

Congruence in terms of curvature:

Proposition:Let γ_1 and γ_2 be arc-length parameterizations of curves X_1 and X_2 and κ_1 , κ_2 be the corresponding curvature functions. Then

•
$$\exists c \in \mathbb{R}$$
, such that $\kappa_1(s) = \kappa_2(s+c) \implies X_1 \underset{SE(2)}{\cong} X_2$.

• \Leftarrow is true if X_1 and X_2 are simple.



Solution based on curvature as a function of the arc-length:

Given two simple planar curves X_1 and X_2 ,

- 1. Compute their arc-length parameterizations $\gamma_1(s)$ and $\gamma_2(s)$;
- 2. Compute their curvatures $\kappa_1(s)$ and $\kappa_2(s)$;

3.
$$X_1 \underset{SE(2)}{\cong} X_2 \iff \exists c \in \mathbb{R} \text{ such that } \kappa_1(s) = \kappa_2(s+c)$$

Drawbacks:

- step 1 computing the arc-length parameterization is difficult;
- step 3 to avoid the shift we must match "the initial point".

The differential signature (κ, κ_s) is a parametrization independent invariant:

Calabi, Olver, Shakiban, Tannenbaum, Haker (1998)

Definition: Let $X \subset \mathbb{R}^2$ be an immersed, at least C^3 -smooth curve.

• for a parameterization $\gamma \colon I \subset \mathbb{R} \to X$, a parameterized signature map $\sigma_{\gamma} \colon I \to \mathbb{R}^2$ is defined by $\sigma_{\gamma}(t) = (\kappa(t), \kappa_s(t))$, where

$$\kappa = \frac{\det(\gamma', \gamma'')}{|\gamma'|^3}$$
 and $\kappa_s = \frac{(\gamma' \cdot \gamma') \det(\gamma', \gamma''') - 3(\gamma' \cdot \gamma'') \det(\gamma', \gamma'')}{|\gamma'|^6}$

• the signature (the signature set) of X is the image of this map:

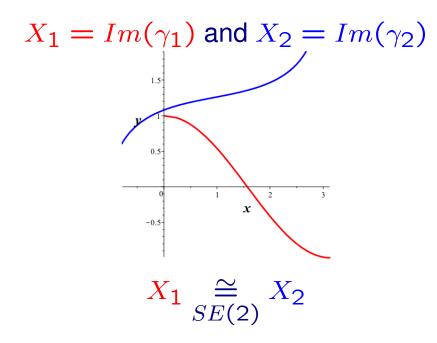
 $S_X = \mathrm{Im}\sigma_\gamma;$

Proposition:

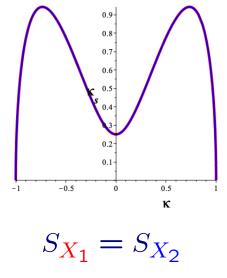
- S_X does not depend on parameterization.
- S_X is SE(2) invariant: $X_1 \cong_{SE(2)} X_2 \implies S_{X_1} = S_{X_2}$

Example:

$$\begin{split} \gamma_{1}(t) &= \left(t^{3}, \cos(t^{3})\right), \\ t \in [0, \pi^{\frac{1}{3}}] \\ \kappa(t) &= -\frac{\cos(t^{3})}{(\sin^{2}(t^{3})+1)^{\frac{3}{2}}} \\ \kappa_{s}(t) &= \frac{2\sin(t^{3})(\cos^{2}(t^{3})+1)}{(\sin^{2}(t^{3})+1)^{3}} \end{split} \qquad \begin{aligned} \gamma_{2}(t) &= (\frac{3}{5}t - \frac{4}{5}\cos t, \frac{4}{5}t + \frac{3}{5}\cos t), \\ t \in [0, \pi] \\ \kappa(t) &= -\frac{\cos t}{(\sin^{2}t+1)^{\frac{3}{2}}} \\ \kappa(t) &= -\frac{\cos t}{(\sin^{2}t+1)^{\frac{3}{2}}} \\ \kappa_{s}(t) &= \frac{2\sin(t^{3})(\cos^{2}(t^{3})+1)}{(\sin^{2}t+1)^{3}} \\ \kappa_{s}(t) &= \frac{2\sin(t)(\cos^{2}t+1)}{(\sin^{2}t+1)^{3}} \end{split}$$



The signatures are equal:



Observations:

- $\kappa \equiv 0$ on $X \iff X$ is a line (or a line segment) $\iff S_X$ is a point (0,0).
- $\kappa \equiv c \neq 0$ on $X \iff X$ is a circle (or a circular arc) $\iff S_X$ is a point (c, 0).
- otherwise S_X is one-dimensional phase portrait: if $\gamma(s)$ is an arc-length parameterization of X, then $(\kappa(s), \kappa'(s))$ is "in-phase" parametrization of S_X .

A fundamental question:

Do signatures characterize equivalence classes of C^3 smooth curves?

Signatures are invariant:

$$X_1 \underset{SE(2)}{\cong} X_2 \qquad \Longrightarrow \qquad S_{X_1} = S_{X_2}$$

but are they separating?

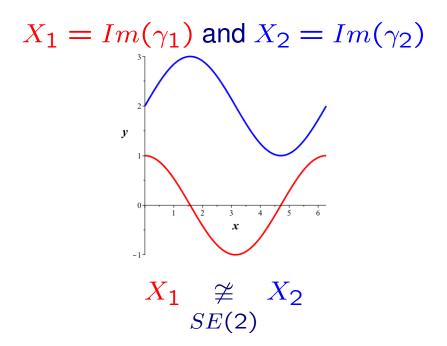
$$S_{X_1} = S_{X_2} \qquad \stackrel{?}{\Longrightarrow} \qquad X_1 \underset{SE(2)}{\simeq} X_2$$

Answer: No, unless we put some additional restrictions on a class of curves we consider, or augment the signature with some additional information.

Non-congruent curves with the same signatures

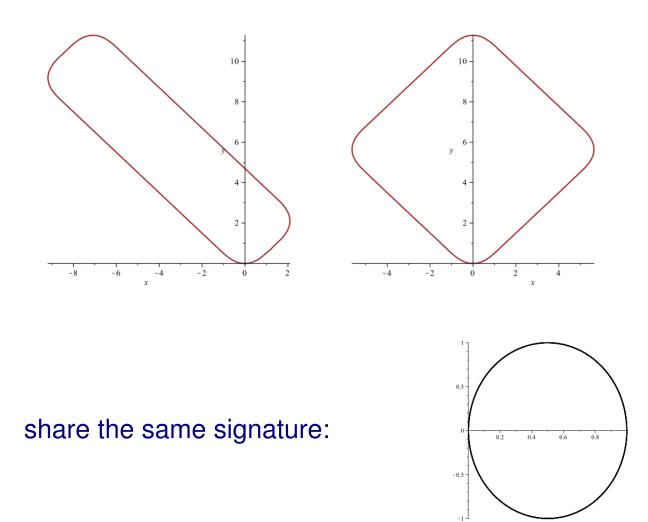
I. Non-congruent curve segments

$$\begin{split} \gamma_1(t) &= (t, \cos t), \ t \in [0, 2\pi] \quad \gamma_2(t) = (t, \sin t + 2) \ t \in [0, 2\pi], \\ \kappa(t) &= -\frac{\cos t}{(\sin^2 t + 1)^2} \quad \kappa(t) = -\frac{\sin t}{(\cos^2 t + 1)^2} \\ \kappa_s(t) &= \frac{2\sin t(\cos^2 t + 1)}{(\sin^2 t + 1)^3} \quad \kappa_s(t) = -\frac{2\cos t(\sin^2 t + 1)}{(\cos^2 t + 1)^3} \end{split}$$



The signatures are equal: $\int_{0.6}^{0.8} \int_{0.4}^{0.6} \int_{0.2}^{0.5} \int_{0.5}^{0.5} \int_{0.6}^{0.5} \int_{0.6}^{0.5} \int_{0.6}^{0.5} \int_{0.8}^{0.6} \int_{0.8}^{0.6}$ II. Non-congruent closed curves containing straight segments and circular arcs (degenerate curves.)

The following two curves



Images are from Hickman (2012)

Can we construct examples of non-congruent curves, such that:

- whose parametrization defined over \mathbb{R} ($\gamma \colon \mathbb{R} \to \mathbb{R}^2$);
- which do not contain segments of constant curvature (non-degenerate curves)?

In addition we may want them to be

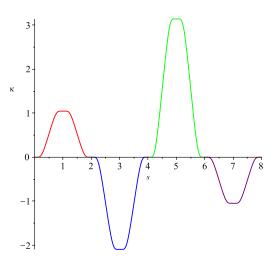
- closed (γ is periodic);
- simple.

III. Non-congruent non-degenerate closed curves with the same signatures. Geiger and IK (2020):

- Describe a general mechanism for constructing families of non-congruent curves with the same signature.
- Introduce the notion of a signature quiver and use it to
 - to formulate congruence criteria for non-degenerate curves.
 - encode global and local symmetries of curves.

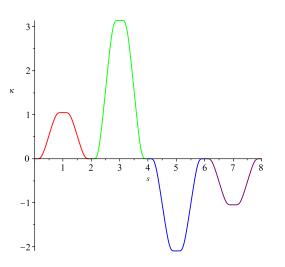
Our results continue the line of research in

- Musso and Nicolodi (2009)
- Hickman (2012)
- Olver (2016)

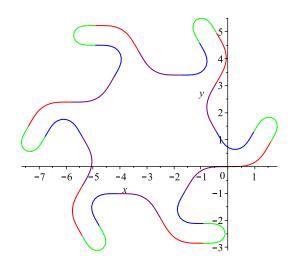


Curvature $\kappa_1(s)$.

 X_1 is reconstructed from the periodic continuation of $\kappa_1(s)$

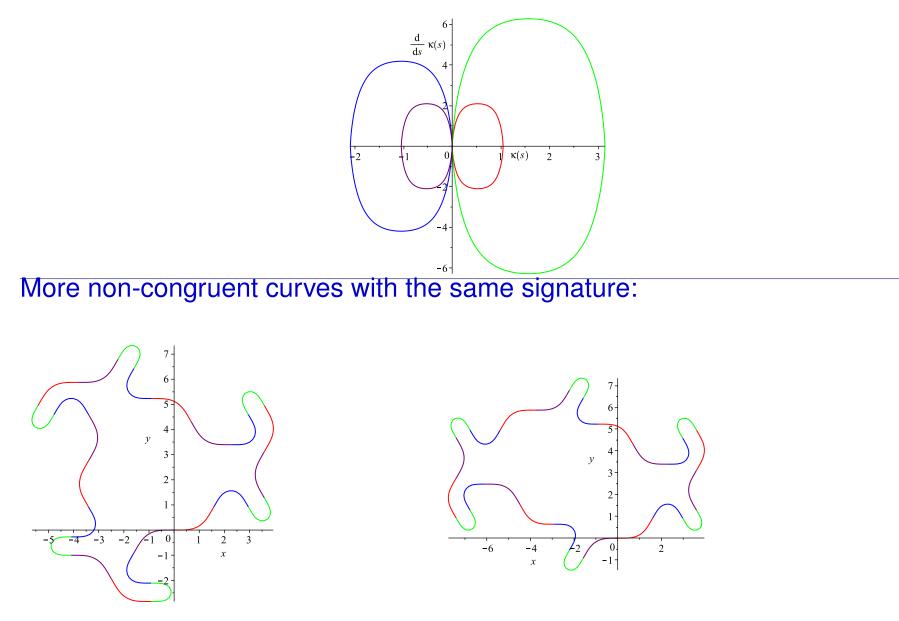


Curvature $\kappa_2(s)$.



 X_2 is reconstructed from the periodic continuation of $\kappa_2(s)$.

 X_1 and X_2 are non-congruent, but have the same signature:



 X_3 has the symmetry group \mathbb{Z}_3

 X_4 has the symmetry group \mathbb{Z}_2 .

So, what does equality of the signatures $S_{X_1} = S_{X_2}$ imply?

Local congruence: $\forall p \in X_1$ such that $\kappa_s(p) \neq 0$, \exists a curve piece $\hat{X}_1 \subset X_1$, $p \in \hat{X}_1$, which is SE(2)-congruent to a curve piece $\hat{X}_2 \subset X_2$. [Calabi, Olver, Shakiban, Tannenbaum, Haker (1998)]

Global congruence, $X_1 \underset{SE(2)}{\cong} X_2$, when:

- X_1 and X_2 have analytic parameterizations with domain \mathbb{R} ;
- X_1 and X_2 are algebraic;

(We will discuss an adaptation of the differential signature to algebraic curves later)

- X_1 and X_2 have no vertices [Hoff and Olver, 2013];
- X₁ and X₂ are non-degenerate closed with simple signatures [Geiger and IK, 2020].

Differential signatures for other groups

Classifying Differential Invariants

Theorem: Let a Lie group $G \cap \mathbb{R}^2$, dim G = r. Consider the induced action on the set of sufficiently smooth parameterized curves $\gamma(t) = (x(t), y(t))$. Then

- \exists classifying differential invariants K_1 and K_2 of orders^{*} k and r, respectively, k < r, s. t. the (K_1, K_2) -signature can be used to solve the local equivalence problems for sufficiently regular planar curves under *G*-action.
- For most actions[†] the signature is a phase portrait:
 - $K_1 = \kappa_G$ is the (r 1)-th order differential invariant, called *G*-curvature.

-
$$K_2 = \frac{d\kappa_G}{ds_G}$$
 is the derivative of the *G*-curvature with respect to the *G*-arc-length.

*The order of a differential invariants is the highest order of the derivatives of γ it depends on. †See Theorem 5.24, Olver, "Equivalence, Invariance and Symmetries" (1995).

Curvatures and arc-lengths for $SE(2) \subset SA(2) \subset PGL(3)$

G	G-curvature	G-arc-length
SE(2)	$\kappa = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{\frac{2}{3}}}$	$ds = \sqrt{x'^2 + y'^2} dt$
SA(2)	$\mu = \frac{3\kappa (\kappa_{ss} + 3\kappa^3) - 5\kappa_s^2}{9\kappa^{8/3}}$	$d\alpha = \kappa^{1/3} ds$
<i>PGL</i> (3)	$\eta = \frac{6\mu_{\alpha\alpha\alpha}\mu_{\alpha} - 7\mu_{\alpha\alpha}^2 - 9\mu_{\alpha}^2\mu}{6\mu_{\alpha}^{8/3}}$	$d\rho = \mu_{\alpha}^{1/3} d\alpha$

[Inductive and recursive constructions of moving frames and invariants: Kogan (2003), Olver (2018), Olver and Valiquette (2018)]

Differential signatures of algebraic curves

Rational Classifying Differential Invariants

Theorem: [Ruddy, Vinzant and IK (2020)] Let a complex^{*} algebraic group $G \subset PGL(3) \curvearrowright \mathbb{C}^2$, dim G = r. Consider the induced action on the set of algebraic curves defined by an irreducible polynomial F(x, y) = 0. Then

∃ classifying differential invariants K₁ and K₂, depending rationally on the derivatives of F of orders k and r, respectively, k < r, such that (K₁, K₂)-signature can be used to solve the global G-equivalence problems for generic algebraic curves.

In more details:

Let $\mathcal{P}_d = \{F(x, y) | \deg F \leq d\}$ such that $\binom{d+2}{2} - 2 \geq \dim G$. There exists a Zariski closed subset of \mathcal{P}_d , such that for all curves whose defining equation lies outside of this set:

• the signature map of X , $\sigma_X = (K_1|_X, K_2|_X) \colon X - - > \mathbb{C}^2$, is a rational map;

• the signature of X,
$$S_X = \overline{\text{Im}(\sigma_X)}$$
, is

- a point \iff the symmetry group of X has positive dimension;
- an algebraic curve, whose defining polynomial (in principle) can be computed by an elimination algorithm;
- σ_X is generically n : 1, where n is the cardinality of the symmetry group of X;

•
$$X_1 \stackrel{\simeq}{\underset{G}{\cong}} X_2 \quad \Longleftrightarrow S_{X_1} = S_{X_2}$$
.

Examples of rational classifying invariants

G	<i>SE</i> (2)	<i>E</i> (2)	SA(2)	A(2)	<i>PGL</i> (3)	
<i>K</i> ₁	κ^2	κ^2	μ^3	$\frac{\mu_{\alpha}^2}{\mu^3}$	η^3	
<i>K</i> ₂	κ_s	κ_s^2	μ_{lpha}	$rac{\mu_{lphalpha}}{\mu^2}$	$\eta_ ho$	
irreducible exceptional	lines		lines and conics			

In general, K_1 and K_2 can be computed by

- 1. Prolongations of group actions.
- 2. Algorithm for computing a generating set of rational invariants [Derksen (1999), Hubert and IK (2007), Derksen and Kemper (2015)].

Are there other classifying pairs?

$$\tilde{K}_1 = \frac{aK_1 + b}{cK_1 + d} \text{ and } \tilde{K}_2 = \frac{\alpha(K_1)K_2 + \beta(K_1)}{\gamma(K_1)K_2 + \delta(K_1)},$$

where

$$a, b, c, d \in \mathbb{C}$$
 and $\alpha, \beta, \gamma, \delta \in \mathbb{C}[K_1]$.

Degree of a signature

Theorem: Signatures of generic curves of degree d have the same degree and this degree is the upper bound.

G	SE(2)	<i>E</i> (2)	SA(2)	A(2)	<i>PGL</i> (3)
$\operatorname{deg} S_X$	$6d^2 - 6d$	$12d^2 - 12d$	$24d^2 - 48d$	$24d^2 - 48d$	$96d^2 - 216d$

Signatures of symmetric curves have much lower degree

Example: Fermat curves X_d , defined by $F_d(x,y) = x^d + y^d + 1$ of degree d > 2, under PGL(3)-action.

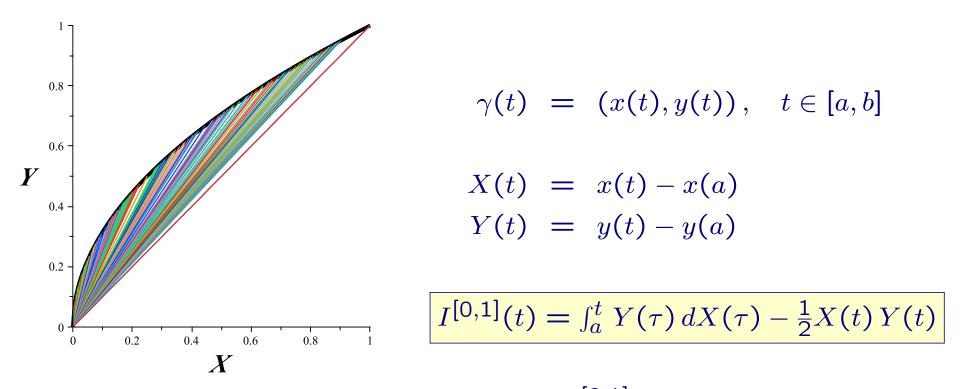
- the symmetry group is $S_3 \rtimes (\mathbb{Z}_d \times \mathbb{Z}_d)$ of cardinality $6d^2$;
- the signature of has degree 4 independently of *d*.

Its defining polynomial is

$$\begin{split} & 49392(d-2)^4 d^3(d+1)^4 (2d-1)^4 K_2^4 + 602112(d-2)^4 d^3(d+1)^4 (2d-1)^4 K_1 K_2^2 \\ & + 10584(d-2)^3 d^2(d+1)^3 (2d-1)^3 \left(10d^2 - 3d + 3\right) \left(34d^2 - 27d + 27\right) K_2^3 \\ & + 1835008(d-2)^4 d^3(d+1)^4 (2d-1)^4 K_1^2 - 9289728(d-2)^3 d^2(d+1)^3 (2d-1)^3 \left(d^2 - d + 1\right)^2 K_1 K_2 \\ & + 61236(d-2)^2 d(d+1)^2 (2d-1)^2 \left(d^2 - d + 1\right) \left(10d^2 - 3d + 3\right)^2 \left(16d^2 - 9d + 9\right) K_2^2 \\ & - 23328(d-2)^2 d(d+1)^2 (2d-1)^2 \left(11792d^8 - 17376d^7 + 28152d^6 - 24424d^5 + 19473d^4 - 8940d^3 \\ & + 3358d^2 - 324d + 81\right) K_1 + 118098(d-2)(d+1)(2d-1) \left(d^2 - d + 1\right)^2 \left(10d^2 - 3d + 3\right)^4 K_2 \\ & + 531441d \left(d^2 - d + 1\right)^3 \left(10d^2 - 3d + 3\right)^4 . \end{split}$$

Integral Invariants

Example: Signed area between the curve and a secant



Question: With respect to which transformation $I^{[0,1]}$ is invariant?

Answer: special affine $-SA(2) \implies$ special Euclidean -SE(2).

How to obtain integral invariants for planar curves?

 $\gamma(t) = (x(t), y(t)), t \in [0, 1]$

1. Shift starting point to the origin: X(t) = x(t) - x(0), Y(t) = y(t) - y(0),

2. Prolong the action to integral variables:

 $X^{[i,j]}(t) = \int_0^t X(\tau)^i Y(\tau)^j dX(\tau).$

3. Fels-Olver m.-f. method \Rightarrow Invariants.

Examples:

. . .

0-th order $r = \sqrt{X^2 + Y^2} - E(2)$ -invariant

1-st order $I^{[0,1]} = X^{[0,1]} - \frac{1}{2}XY - SA(2)$ and SE(2)-invariant.

2-nd order - $I^{[1,1]} = Y X^{[1,1]} - \frac{1}{2}X X^{[0,2]} - \frac{1}{6}X^2 Y^2$ -SA(2) and E(2)-invariant

-
$$I^{[0,2]} = Y X^{[0,2]} + 2X X^{[1,1]} - \frac{1}{3}XY^3 - \frac{2}{3}X^3Y$$

 E_2 -invariant

[Hann and Hickman (2002) - planar curves; Feng, Krim and IK (2010) - inductive formulas, space curves]

Integral signatures for planar curves

• SE(2)-signature $(r, I^{[0,1]})$

•
$$E(2)$$
- signatures $\left(r, \left(I^{[0,1]}\right)^2\right)$ or $\left(r, I^{[1,1]}\right)$.

$$\left(\frac{\left(I^{[0,1]}\right)^2}{r^4}, \frac{I^{[1,1]}}{r^4}\right)$$

• SA(2)-signature $(I^{[0,1]}, I^{[1,1]})$

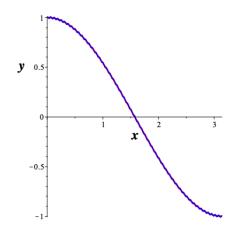
Main features of signatures based on integral invariants:

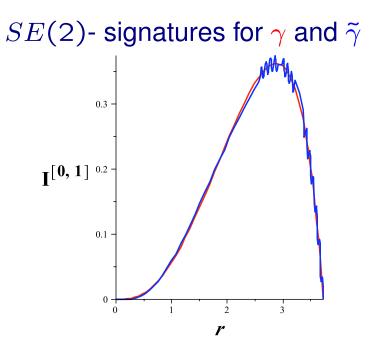
- Stability with respect to noise and high frequency small perturbations.
- Easily derived invariant numerical approximations.
- Dependence on initial point (semi-local).
- Local, independent of initial point, discrete integral signatures can be defined [Feng, Krim and IK (2010)]

Stability of integral signature

$$\gamma(t) = (t, \cos t), \quad \tilde{\gamma}(t) = (t, \cos(t) + \frac{1}{100} \sin(100t), t \in [0, \pi]$$
 $t \in [0, \pi]$

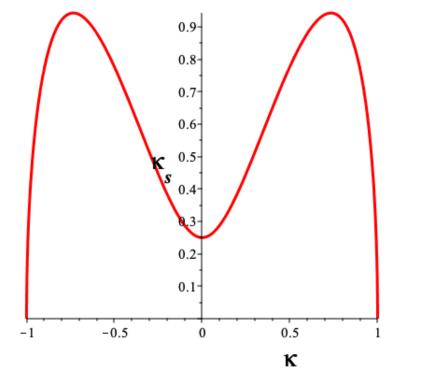
Images of γ and $\tilde{\gamma}$ in \mathbb{R}^2

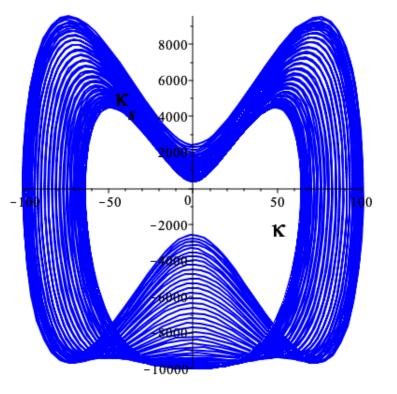




SE(2)-differential signatures for the same curves

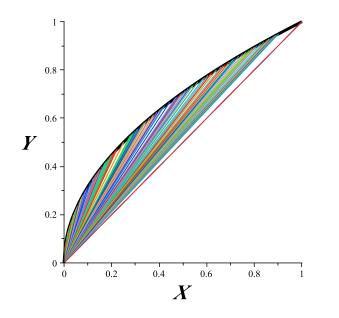
$$\gamma(t) = (t, \cos t), \quad \tilde{\gamma}(t) = (t, \cos(t) + \frac{1}{100} \sin(100t), t \in [0, \pi]$$
 $t \in [0, \pi]$





47

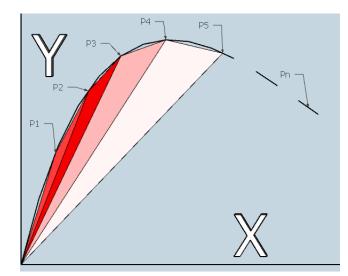
Numerical approximations:



$$\gamma(t) = (x(t), y(t)), t \in [a, b]$$

 $X(t) = x(t) - x(a)$
 $Y(t) = y(t) - y(a)$

$$I^{[0,1]}(t) = \int_{a}^{t} Y(\tau) \, dX(\tau) - \frac{1}{2}X(t) \, Y(t)$$



$$\gamma(n) = (x(n), y(n)), n = 0, 1, 2, ...$$

 $X(n) = x(n) - x(0)$
 $Y(n) = y(n) - y(0)$

$$I^{[0,1]}(n) = \frac{1}{2} \sum_{i=1}^{n} \begin{vmatrix} X_i & X_{i-1} \\ Y_i & Y_{i-1} \end{vmatrix}$$

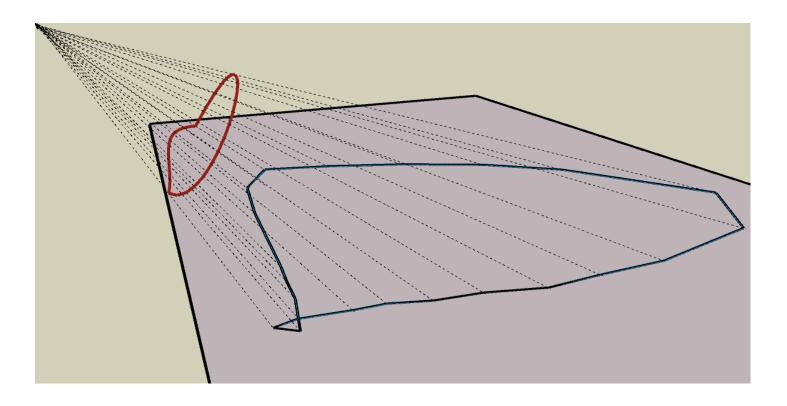
Applications of integral invariants

- Feng, Krim, and IK (2007) (face recognition)
- Golubitsky, Mazalov and Watt (2009) (handwriting recognition)
- Katie Iwancio Ph.D. Thesis, NCSU (2009) (contour-matching)
- Susan Crook Ph.D. Thesis, NCSU (2013) (puzzles, handwriting)

Returning to the projection problem:

Relations between invariants of an object and its image

Relations between invariants of an object and its image



Invariants with respect to which group-action on \mathbb{R}^3 ? on \mathbb{R}^2 ?

- on \mathbb{R}^3 standard linear action of GL(3) (centro-affine invariants) or SL(3)-action (centro-equi-affine invariants)
- on \mathbb{R}^2 projective action (projective invariants)

Centro-equi-affine invariants for space curves in terms of the invariants of the planar images:

Theorem: [Olver and IK (2015)]

Differential algebra of centro-equi-affine invariants of space is generated by:

- $\hat{\eta} = P_0^*(\eta)$
- $\zeta = z_3 P_0^* \left(\frac{1}{\mu_\alpha^{1/3}} \right)$
- $d\hat{\rho} = P_0^*(d\rho),$

where

- η and $d\rho$ are planar projective curvature and arc-length;
- μ and $d\alpha$ are planar equi-affine curvature and arc-length;
- P_0 is the standard central projection $x = \frac{z_1}{z_3}$, $x = \frac{z_2}{z_3}$ from the origin to the plane $z_3 = 1$:

Centro-equi-affine curvature, torsion and arc-lengths: [Olver (2010)]

Let $\mathcal{Z} \subset \mathbb{R}^3$ be parametric curve $\mathbf{z}(t) = (z_1(t), z_2(t), z_3(t))$, then

- centro-equi-affine arc-lengths $dS := |\mathbf{z}, \dot{\mathbf{z}}, \ddot{\mathbf{z}}| dt$ (undefined when \mathcal{Z} is contained in the plane spanned by $\mathbf{z}(0)$ and $\dot{\mathbf{z}}(0)$).
- centro-equi-affine torsion $\tau = |\mathbf{z}_S, \mathbf{z}_{SS}, \mathbf{z}_{SS}|$ ($\tau \equiv 0 \iff \mathcal{Z}$ is coplanar).
- centro-equi-affine curvature $\kappa = |\mathbf{z}, \mathbf{z}_{SS}, \mathbf{z}_{SS}|$

Theorem κ , τ and dS generate differential algebra of centro-affine invariants.

Relationship between two generating sets:[Olver and IK (2015)]

•
$$\hat{\eta} = \frac{a_{ss} a - \frac{7}{6} a_s^2 - \frac{3}{2} \kappa a^2}{3^{2/3} a^{8/3}};$$

•
$$\zeta = (3a)^{-1/3};$$

•
$$d\hat{\rho} = (3 a)^{1/3} dS;$$

where $a = \kappa_S + 2\tau$ is identically zero iff $P_0(\mathcal{Z})$ is a line or a conic.

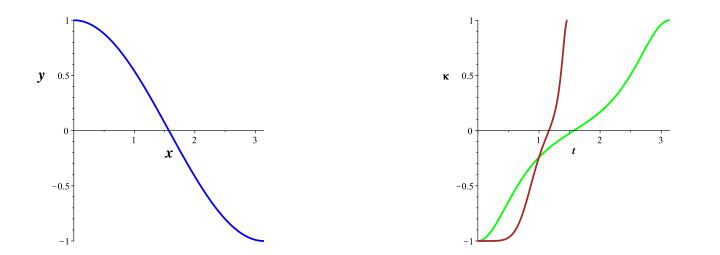
Additional slides

Warning: $\kappa(t)$ for an arbitrary parametrization can not be usedto solve the equivalence problem!

Example: Consider two parametrization of y = cos(x), $x \in [0, \pi]$:

$$\gamma(t) = (t, \cos t), t \in [0, \pi] \text{ and } \tilde{\gamma}(t) = (t^3, \cos(t^3)), t \in [0, \pi^{\frac{1}{3}}].$$

The corresponding graphs $\kappa(t) = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{\frac{2}{3}}}$ are not related by a shift:



The graph of $y = \cos(x)$ for $x \in [0, \pi]$.

The graphs of $\kappa(t)$ for $\gamma(t)$ and $\tilde{\gamma}(t)$.

Non-degeneracy and vertices

Definition:

- Let $\gamma(t)$ be a parameterization of X. Then a point $p = \gamma(t_0)$ is a vertex if $\kappa_s(t_0) = 0$.
- X with a finite set of vertices is called non-degenerate.

Observations:

- Curves containing circular arcs or straight segments are degenerate.
- Under the signature map, vertices are mapped to the horizontal axis.
- Every closed curve has at least 2 vertices and a simple closed curve has at least 4. Mukhopadhyaya (1909), Kneser (1912), AMS Notices overview DeTurck, Gluck, Pomerleano, and Shea Vick (2007)

Theorem. [Musso and Nicolodi (2009)] *Any closed phase portrait is the Euclidean signature of a 1-parameter family of non congruent closed curves.*

Families of curves constructed in the proof of this theorem contained at most one non-degenerate curve.

References:

- 1. M. Boutin, Numerically invariant signature curves, Int. J. Computer vision, **40** (2000), pp. 235–248.
- 2. J. M. Burdis, I. A. Kogan, and H. Hong, Object-image correspondence for algebraic curves under projections, Symmetry Integrability Geom. Methods Appl. (SIGMA), **9** (2013).
- 3. Eugenio Calabi, Peter J. Olver, Chehrzad Shakiban, Allen Tannenbaum, and Steven Haker, Differential and numerically invariant signature curves applied to object recognition, International Journal of Computer Vision **26** (1998), no. 2, 107–135.
- 4. Susan Crook, Automated Shape Recognition and Curve Matching using Discrete Invariants., PhD thesis, North Carolina State University, (2013), https://repository.lib.ncsu.edu/handle/1840.16/8722.
- 5. H. Derksen and G. Kemper, Computational invariant theory, vol. 130 of Encyclopaedia of Mathematical Sciences, Springer, Heidelberg, enlarged ed., 2015.
- 6. Dennis DeTurck, Herman Gluck, Daniel Pomerleano, and David Shea Vick, The four vertex theorem and its converse, Notices Amer. Math. Soc. **54** (2007), no. 2, 192–207.
- 7. M. Fels and P. J. Olver, Moving Coframes. II. Regularization and Theoretical Foundations, Acta Appl. Math., **55** (1999), pp. 127–208.
- 8. Eric Geiger and Irina A. Kogan, Non-congruent non-degenerate curves with identical signatures (2020) preprint https://arxiv.org/abs/1912.09597

- 9. Shuo Feng, Irina A. Kogan, and Hamid Krim, Classification of curves in 2D and 3D via affine integral signatures, Acta Applicandae Mathematicae. **109** (2010), no. 3, 903–937
- 10. S. Feng, H. Krim, and I. A. Kogan, 3D face recognition using Euclidean integral invariants signature, 14th Workshop on Statistical Signal Processing, IEEE/SP, (2007), 156–160.
- 11. Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Orientation-independent recognition of handwritten characters with integral invariants. In Proc. 9th Asian Symposium on Computer Mathematics, (ASCM 2009).
- 12. C. Hann and M. Hickman. Projective curvature and integral invariants. Acta Applicandae Mathematica, (2002) **74**:177–193.
- 13. Mark S. Hickman, Euclidean signature curves, Journal of Mathematical Imaging and Vision **43** (2012), no. 3, 206–213.
- 14. Daniel J. Hoff and Peter J. Olver, Extensions of invariant signatures for object recognition, Journal of Mathematical Imaging and Vision **45** (2013), no. 2, 176–185.
- 15. E. Hubert and I. A. Kogan, Rational invariants of an algebraic group action: Construction and rewriting, Journal of Symbolic Computations, **42** (2007), 203–217.
- 16. Kathleen Iwancio, Use of integral signatures and Hausdorff distance in planar curve matching, PhD thesis, North Carolina State University, (2009), https://repository. lib.ncsu.edu/handle/1840.16/4408.

- 17. I. A. Kogan, Two algorithms for a moving frame construction, Canad. J. Math., **55** (2003), pp. 266–291.
- 18. Irina A. Kogan and Peter J. Olver, Invariants of objects and their images under surjective maps, Lobachevskii J. Math.**36** (2015), no. 3, 260–285
- 19. I. A. Kogan, M. G. Ruddy, and C. Vinzant, Differential Signature of Algebraic Curves. 2020. SIAM Journal on Applied Algebra and Geometry (SIAGA) **4**(1), (2020) 185 226.
- 20. Emilio Musso and Lorenzo Nicolodi, Invariant signatures of closed planar curves, Journal of Mathematical Imaging and Vision **35** (2009), no. 1, 68–85.
- 21. Peter J. Olver, Equivalence, invariants and symmetry, Cambridge University Press, 1995.
- 22. Peter J. Olver, Moving frames and differential invariants in centro-equi-affine geometry, Lobachevskii J. of Math. **31** (2010), 77–89.
- 23. Peter J. Olver, The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory **26** (2016), no. 1, 235–267.
- 24. Michael Ruddy, The Equivalence Problem and Signatures of Algebraic Curves, PhD thesis, North Carolina State University, (2019), https://repository.lib.ncsu.edu/handle/1840.20/36673