
DART X, February 10, 2020
CUNY, New York City∗

Generalization of an Integrability Theorem of Darboux

and
the Stable Configuration Condition.

Irina Kogan

joint work with

Michael Benfield and Kris Jenssen

∗This presentation is supported by NSF DMS-1952694 grant.
1



• M. Benfield, H. K. Jenssen, and I. A. Kogan.
A generalization of an integrability theorem of Darboux,
Journal of Geometric Analysis, Vol. 29 No. 4, (2019), 3470-3493.
https://doi.org/10.1007/s12220-018-00119-6

• H. K. Jenssen, and I. A. Kogan.
A mixed boundary value problem for uxy = f(x, y, u, ux, uy), (2019), 26
pp.
in press in The Journal of Differential Equations,
online: https://doi.org/10.1016/j.jde.2019.11.063

Research was supported, in part, by NSF grant DMS-1311743 (PI: Kogan) and
NSF grant DMS-1311353 (PI: Jenssen).

2

https://doi.org/10.1007/s12220-018-00119-6
https://doi.org/10.1016/j.jde.2019.11.063


Integrability theorems for PDEs: – theorems about local existence
and the “size” of the solution set for an overdetermined system of PDEs.

The “size” of the solution set is the number of arbitrary functions and
constants the general solution depends on.

A more subtle question is about type of data that can be prescribed to
guarantee the uniqueness of the solution.
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Examples of the integrability theorems for PDEs:

• Cartan-Kähler theorem – a theorem determining the size of the solution
set of general systems of PDEs and EDSs, but requires analyticity of the
equations and the data.

• Darboux [Leçons sur les systèmes orthogonaux et les coordonnées
curvilignes. (1910)] – quite specialized, provides explicit prescription
of data that guarantees uniqueness, requires only C1-regularity of the
equations and the data.

• PDE version of the Frobenius integrability theorem is a particular case of
the Darboux theorem.

We formulate and prove a generalization of the Darboux theorem.
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Darboux Théorème III

Chapitre I, Livre III, Leçons sur les systèmes orthogonaux et les coordonnées
curvilignes. (1910).
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Consider a system of PDEs:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

where

• x = (x1, . . . , xn) are independent variables;

• u = (u1, . . . , um) are unknown functions;

• Iα ⊆ {1, . . . , n} determines the set of partial derivatives ∂xiuα prescribed
by the system for the unknown function uα.

• fαi (x, u) are given C1-functions on some open subset Ω×Υ ⊂ Rn×Rm.
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Example of Darboux-type system:

• system:
∂xu = f(x, y, u, v)

∂xv = g(x, y, u, v)

∂yv = h(x, y, u, v)

• two unknown functions u and v of (x, y).

• I1 = {1} and I2 = {1,2}.

• f, g, h are given C1-functions of (x, y, u, v) on an open subset of R2×R2.
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Returning to the Darboux theorem

the system:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a point x̄ ∈ Rn by:

uα|Ξα = φα, α = 1, . . . ,m,

where

• Ξα ⊂ {x |xi = x̄i, for all i ∈ Iα}

• φα is a given C1-function on Ξα

• fαi are given C1-functions on open Ω × Υ, where x̄ ∈ Ω ⊂ Rn and
φ(x̄) ∈ Υ ⊂ Rm.

Under appropriate integrability conditions

has a unique local C1-solution near x̄.
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Example (data): for the system

∂xu = f(x, y, u, v)

∂xv = g(x, y, u, v)

∂yv = h(x, y, u, v)

we prescribe data near (x̄, ȳ):

u(x̄, y) = φ(y), v(x̄, ȳ) = ψ,

where φ(y) is an arbitrary C1-function of one variable, ψ is a constant.
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Example (integrability conditions):

ux = f(x, y, u, v)

vx = g(x, y, u, v)

vy = h(x, y, u, v)

Equality of partials vxy = vyx imposes a condition on f, g, h:

gy + gu uy + gv vy = hx + hu ux + hv vx

⇓ substitute ux, uy, vx, and vy from the system . . .
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Example (integrability conditions):

ux = f(x, y, u, v)

vx = g(x, y, v) gu = 0

vy = h(x, y, u, v)

Equality of partials vxy = vyx imposes a condition on f, g, h:

gy + gu uy + gv vy = hx + hu ux + hv vx

⇓ substitute ux, vx, and vy from the system :

gy + gv h = hx + hu f + hv g
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The Darboux theorem implies that a system:

ux = f(x, y, u, v)

vx = g(x, y, v) gu = 0

vy = h(x, y, u, v)

with the data

u(x̄, y) = φ(y), v(x̄, ȳ) = ψ,

where φ(y) is an arbitrary C1-function of one variable, ψ is a constant and
f, g, h are C1-functions such that the equality

gy + gv h = hx + hu f + hv g

is identically satisfied in a neighborhood of a point (x̄, ȳ, φ(ȳ), ψ) ∈ R2 × R2,

has a unique C1-solution near (x̄, ȳ).
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The Darboux theorem (Théorème III)

A system:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a point x̄ ∈ Rn by:

uα|Ξα = φα, α = 1, . . . ,m, where

• Ξα ⊂ {x |xi = x̄i, for all i ∈ Iα} and ∩αΞα = x̄.

• φα is an arbitrary C1-function on Ξα

• fαi (x, u) are C1-functions on an open ngbhd. of (x̄, φ(x̄)) ∈ Rn+m, s.t.:

∀α and ∀i, j ∈ Iα, such that i 6= j:

1. ∀β ∈ {1, . . . ,m}, if i /∈ Iβ then ∂uβf
α
j ≡ 0

2. ∂xif
α
j +

∑
β:i∈Iβ

(
∂uβf

α
j

)
f
β
i ≡ ∂xjf

α
i +

∑
β:j∈Iβ

∂uβf
α
i f

β
j

has a unique local C1-solution near x̄.
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Particular cases

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

• if, for all α, |Iα| = 1 then the system is determined.
(Darboux’s Théorème I)

• if, for all α, |Iα| = n then the system is Frobenius
(Darboux’s Théorème II)

14



Outline of Darboux’s proof

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

• Darboux’s Théorème I (|Iα| = 1 for all α) is proved via Picard iterations.

• Darboux’s Théorème III (|Iα| is arbitrary)

Darboux wrote out a proof only for n = 2 and n = 3:

“Pour établier cette importante proposition, sans employer un trop grand luxe de

notations, nous nous bornerons au cas de deux et de trois variables indépendantes, qui

suffira d’ailleurs pour les applications que nous avons en vue”.

– for n = 2, the proof uses Théorème I.

– for n = 3, Darboux identifies sub-systems that can be treated by
Théorème I or by n = 2 case. These sub-systems are solved in a
“right” order so that the solution of one sub-system provides initial data
to the next.

This suggests a proof by induction.
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Extending Darboux’s argument to an inductive proof for an arbitrary number of
independent variables turned out to be non-trivial:

Benfield, Jenssen, and IK, ”On two theorems of Darboux” (2017) preprint, 27 pp

https://arxiv.org/abs/1709.07473

This inductive argument does not work for a generalization we were interested
in.

We realized that a direct proof of a more general version of the theorem can be
given.
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Generalization of Théorème III

Our theorem generalizes Darboux’s in two ways:

(i) Instead of partial derivatives, the directional derivatives of the unknown
functions are prescribed along C1-vector fields comprising a local frame
{r1, . . . , rn} near x̄:

ri(uα)
∣∣∣
x

= fαi (x, u(x)) for each i ∈ Iα ⊆ {1, . . . , n}, .

(Iα may vary with α.)

(ii) The prescribed data φα for unknown uα may be given along an arbitrary
(n − |Iα|)-dimensional manifold through the point x̄, transversal to the
vector fields {ri | i ∈ Iα}.
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Example of a generalized Darboux system:

• system:
r1(u) = f(x, y, u, v)

r1(v) = g(x, y, u, v)

r2(v) = h(x, y, u, v)

• r1 = ∂
∂x + x ∂∂y and r2 = y ∂∂x + ∂

∂y

• non-commutative frame on R2\{(x, y)|xy = 1}:

[r1, r2] = x
∂

∂x
− y

∂

∂y
= c112 r1 + c212 r2,

where c112 = x+y2

1−xy and c212 = −y+x2

1−xy

• Ξ1 = {(arctan(y), y)| − 1 < x < 1} and Ξ2 = (0,0)

• u|Ξ1
= u(arctan(y), y) = φ(y) and v|Ξ2

= v(0,0) = ψ.

• Does a solution in a neighborhood of (0,0) exist? Unique?
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r1(u) = f(x, y, u, v)

r1(v) = g(x, y, u, v)

r2(v) = h(x, y, u, v)

r1 =
∂

∂x
+ x

∂

∂y
and r2 = y

∂

∂x
+

∂

∂y

u|Ξ1
= u(arctan(y), y) = φ(y)

v|Ξ2
= v(0,0) = ψ
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Integrability conditions in the case of non-commuting
derivations:

The derivatives, prescribed by the system must be consistent with the structure
equations of the frame:

[ri, rj] =
n∑

k=1

ckijrk.

In other words, we substitute the derivatives rj(uα) prescribed by the system
into

ri
(
rj(uα)

)
− rj

(
ri(uα)

)
=

n∑
k=1

ckijrk(uα) (∗)

and require that:

1. No unprescribed derivatives of uα are present in (*).

2. Equality (*) holds as an identity near (x̄, φ(x̄)) ∈ Rn × Rm.
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Integrability conditions in details:

ri
(
rj(uα)

)
− rj

(
ri(uα)

)
=

n∑
k=1

ckij rk(uα) (∗)

∀α and ∀i, j ∈ Iα, such that i 6= j:

1. No unprescribed derivatives of uα are present in (*):

• ∀β ∈ {1, . . . ,m}, if i /∈ Iβ then ∂uβf
α
j ≡ 0

• if k /∈ Iα then ckij ≡ 0

2. Equality (*) holds as an identity near (x̄, ū) ∈ Rn × Rm:

Dxfαj (x, u) · ri
∣∣∣
x

+
∑

β:i∈Iβ
∂uβf

α
j (x, u)fβi (x, u)

−Dxfαi (x, u) · rj
∣∣∣
x
−

∑
β:j∈Iβ

∂uβf
α
i (x, u)fβj (x, u) ≡

∑
k∈Iα

ckij(x)fαk (x, u).

21



Geometric Stable Configuration Condition (SCC) is the condition
on the relative position of the frame vector fields and the data manifolds.

• SCC is sufficient for proving the existence via Picard iteration scheme as
described above.

• SCC is necessary and sufficient for the uniqueness.

• SCC is automatically satisfied in the original Darboux setting.

• SCC plays role even for determined systems with standard partial
derivatives.
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SCC-examples for determined systems

∂xu = f(x, y, u, v)

∂yv = h(x, y, u, v).

Data manifolds are one dimensional:

• Ξ1 is transversal to ∂x (never has a horizontal tangent) and so can be
parametrized by y.

• Ξ2 is transversal to ∂y (never has a vertical tangent) and so can be
parametrized by x.

• Ξ1 ∩Ξ2 = (0,0)

u|Ξ1
= φ(y) and v|Ξ2

= ψ(x).
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The original Darboux setting :

x

y

⌅2

⌅1

u|Ξ1
= u(0, y) = φ(y) and v|Ξ2

= v(x,0) = ψ(x).
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More general data manifolds:

∂xu = f(x, y, u, v)

∂yv = h(x, y, u, v).

u|Ξ1
= u (ay, y) = φ(y), a > 0

v|Ξ2
= v(x, bx) = ψ(x), b > 0.

x

y x = ay

y = bx

⌅2

⌅1

ab < 1

Stable configuration

x

y

x = ay

y = bx

⌅2

⌅1

ab > 1

Non-stable configuration
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Issues with the non-stable case even for simple examples

x

y

x = ay

y = bx

⌅2

⌅1

∂xu = f(x, y, u, v)

∂yv = h(x, y, u, v).

u|Ξ1
= u (ay, y) = φ(y), a > 0

v|Ξ2
= v(x, bx) = ψ(x), b > 0,

ab > 1

• Proving local existence by Picard iterations (integral curves “run out” of the
domain of the definition of the iterates).

• Strong non-uniqueness example: ux = v, vy = u (uxy = u).

u|Ξ1
= 0 and v|Ξ2

= 0.

v ≡ u ≡ 0 is a solution and ∃ a C1-solution, such that u has strictly
positive values everywhere in an open wedge between Ξ1 and Ξ2!

Jenssen and IK. A mixed boundary value problem for uxy = f(x, y, u, ux, uy). (2019)
26



The Generalized Darboux theorem

A system:

ri(uα)
∣∣∣
x

= fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a fixed point x̄ ∈ Rn by:

uα|Ξα = φα, α = 1, . . . ,m, where

• r1, . . . , rn is a local C1-frame on an open Ω ⊃ x̄, with uniformly bounded
structure coefficients ckij.

• Ξα ⊂ Rn is an (n − |Iα|)-dimensional manifold through x̄, transversal to
{r1, . . . , rn},

• r’s and Ξ’s satisfy SCC,

• φα is an arbitrary C1-function on Ξα,

• fαi (x, u) are C1-functions on an open Ω×Υ ⊃ (x̄, φ(x̄)), satisfying the

the integrability conditions stated above.

has a unique local C1-solution near x̄.
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Proof outline

1. Use Picard-type argument to prove existence and uniqueness of the
solution ũ of the restricted system, which

• has the same equations and data as the original system

• each equation is required to hold only for x on a certain, in general
lower dimensional, submanifold of Rn, containing x̄.

Integrability conditions are not used for this part!

2. Prove that ũ is, in fact, a solution of the original system by:
• introducing functions:

Aαi (x) = ri(ũα)|x − fαi (x, ũ(x)), 1 ≤ α ≤ m, i ∈ Iα
• using integrability conditions of the original system to show that

functions Aαi (x) satisfy a linear homogeneous system of equations of
the “restricted type” covered by part 1.
• observing that Aαi (x) ≡ 0 is a unique solution of such system.
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More details on the “restricted system”

1. Let W t
i (x): R× Rn → Rn denote the flow of ri:

d

dt
W t
i (x) = ri

∣∣∣
W t
i (x)

.

2. For each α, choose an increasing order on the set of indices
Iα = {i1, . . . , ip(α)} and define a map ρ from an appropriate open
neighborhood of (0, x̄) in Rp ×Ξα to a neighborhood Ω of x̄, by

ρ(t1, t2, . . . , tp, ξ) := W
tp
ip
· · ·W t2

i2
W
t1
i1
ξ.

3. By shrinking the domain of ρ, we can insure that Ξn
α = Im(ρ) is an open

neighborhood of x̄with localC1-coordinates (ξ1, . . . , ξn−p, ti1, . . . tip) and
hence

Ξk
α = {x ∈ Ξi

α | tik+1
= 0, . . . , tip = 0}

are C1-submanifolds of Rn.
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4. For the restricted system, we require that for each α = 1, . . . ,m, and each
ik ∈ Iα:

rik(uα)
∣∣∣
x

= fαik(x, u(x)) for x ∈ Ξk
α.

5. If SCC conditions are satisfied , Picard-type argument implies that the fixed
point ũ of a contractive map:

Φ[u]α(x) = φα(ξ) +
∫ t1

0
fαi1

(
W b
i1
ξ, u(W b

i1
ξ)
)
db

+
∫ t2

0
fαi2

(
W b
i2
W
t1
i1
ξ, u(W b

i2
W
t1
i1
ξ)
)
db

...

+
∫ tp

0
fαip

(
W b
ipW

tp−1
ip−1
· · ·W t1

i1
ξ, u(W b

ipW
tp−1
ip−1
· · ·W t1

i1
ξ)
)
db

is the unique solution of the restricted system with the data

uα|Ξα = φα.
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Motivation: Geometric study of systems of hyperbolic conservation laws

Ut + F (U)x = 0.

A sub-problem (the Jacobian Problem):

Given a local frame R = {r1, . . . , rn} on Ω ⊂ Rn, find all maps F : Ω → Rn

such that R is the set of eigenvectors of the Jacobian matrix DF .

1. Jenssen, H. K., and I.K., Conservation laws with prescribed eigencurves. J. of Hyperbolic
Differential Equations (JHDE) Vol. 7, No. 2., (2010), 211– 254.

2. Benfield M., Jenssen, H. K., and I.K., Jacobians with prescribed eigenvectors.Journal of
Differential Geometry and its Applications. Vol. 65, (2019), 108–146.
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

vt − ux = 0

ut + px = 0

St = 0 .

v = 1
ρ is volume per unit mass, u is velocity, S is entropy per unit mass,

p(v, S) > 0 is pressure as a given function, s.t pv < 0 .

• Ut + F (U)x = 0 , whereU = [v, u, S]T and F (U) = [−u, p(v, S),0]T .

• eigenvectors of [DUF ] are:
r1 =

[
1,
√
−pv, 0

]T , r2 = [−pS, 0, pv ]T , r3 =
[
1, −
√
−pv, 0

]T
• eigenvalues of [Duf ] are λ1 = −

√
−pv , λ2 ≡ 0 , λ3 =

√
−pv.
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Example: The Jacobian problem for the Euler frame.

Given:
• (v, u, S) are coordinate functions in R3.

• p(v, S) > 0 , s.t -pv < 0

• vector fields r1 =

 1√
−pV
0

 , r2 =

 −pS0
pV

 , r3 =

 1
−
√
−pV
0



Find: the set F(R) of all maps F : R3 → R3, such that R = {r1, r2, r3} is a
set of eigenvector-fields of the Jacobian matrix [DUF ].
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Answer:

• If
(
pS
pv

)
v
6= 0

F = c

 −u
p(v, S)

0

+ λ̄

 v
u
S

+

 a1
a2
a3

 = c

 −u
p(v, S)

0

+ trivial flux.

eigenvalues: λ1 = −c
√
−pv + λ̄ , λ2 ≡ λ̄ , λ3 = c

√
−pv + λ̄.

• If
(
pS
pv

)
v
≡ 0, then F(R) depends on 3 arbitrary functions of one variable.
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More examples for the Jacobian problem in R3 (coordinates
(u, v, w))

(1) • r1 =

 0
1
u

 , r2 =

 w0
1

 , r3 =

 u
0
−w


(integral curves: lines, parabolas, circles)

F (U) = λ̄

 u
v
w

+

 a1
a2
a3

, λ̄, a1, a2, a3 ∈ R,

• we call such fluxes trivial fluxes: F(R) = F triv.

• λ1 = λ2 = λ3 = λ̄.
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(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)

• F(R)/F triv is a 1-dimensional space

F (U) = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

λ1 = 3 c u v + λ̄, λ2 = −3 c u v + λ̄, λ3 = λ̄.
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(3) (the coordinate frame)

•

r1 =

 1
0
0

 , r2 =

 0
1
0

 , r3 =

 0
0
1


•

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

F(R) is a∞-dimensional space

•

λ1 =
(
φ1
)′

(u), λ2 =
(
φ2
)′

(v), λ3 =
(
φ3
)′

(w).
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Thank you!
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