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System of conservation laws

ut + f(u)x = 0 . (1a)

• n equations on n unknown functions u(x, t) ∈ Ω ⊂ Rn.

• one space-variable x ∈ R; one time-variable: t ∈ R.

• f(u): Ω→ Rn smooth flux.

ut + [Duf ]ux = 0 (1b)

• (1) is called hyperbolic on Ω if ∀ū ∈ Ω the Jacobian matrix [Duf ] is
diagonalizable over R.

m

eigenvector fields R1(u), . . . , Rn(u) of [Duf ] are independent at ∀ū ∈ Ω
– they comprise an eigenframe.

• λ1(u), . . . , λn(u) are eigenfunctions of Duf . If distinct ∀u ∈ Ω, then (1)
is called strictly hyperbolic.
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Problem: Given a set independent vector fields R = {R1, . . . , Rm}, 1 ≤
m ≤ n on open Ω ⊂ Rn, find all maps f : Ω → Rn (fluxes), whose Jacobian
matrix [Duf ] has R as a prescribed (partial) set of eigenvector-fields.

Motivation:

• Construct conservations laws with prescribed rarefaction curves and
analyze how the geometry of these curves determines behavior of the
solutions of conservative these systems.

• Interesting geometric problem on its own.

• Leads to interesting overdetermined systems of PDE’s.
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Examples: full frames in R3 (coordinates (u, v, w))

(1) R1 = [0,1, u]T , R2 = [w,0,1]T , R3 = [u,0,−w]T

4-dimensional space of trivial fluxes:

f = a [u, v, w]T + [b1, b2, b3]T where a, b1, b2, b3 ∈ R

Df = a I =⇒ λ1 = λ2 = λ3 = a

(2) R1 = [v, u, 1]T , R2 = [−v, u, 0]T , R3 = [0, 0, 1]T

5-dimensional vector space of fluxes

f = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

λ1 = 3 c u v + a, λ2 = −3 c u v + a, λ3 = a.

(3) R1 = [1, 0, 0]T , R2 = [0, 1, 0]T , R3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 =
(
φ1
)′

(u), λ2 =
(
φ2
)′

(v), λ3 =
(
φ3
)′

(w).
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What if we prescribe incomplete (partial) eigenframe?

(1) R1 = [0,1, u]T , R2 = [w,0,1]T , R3 = [u,0,−w]T only trivial fluxes.

(1a) R1 = [0,1, u]T , R2 = [w,0,1]T again only trivial fluxes!

(1b) R1 = [0,1, u]T , R3 = [u,0,−w]T .

f = c1


ln(u)

0
1
2

(
w
u − v

)
+ c2

 −
1
3 u

3

uw

w u2

+ a

 uv
v

+

 b1b2
b3



F1 = c1 ln(u)−
1

3
c2 u

3, F2 = c2 uw, F3 =
1

2
c1

(
w

u
− v

)
+c2 u

2.

λ1 = c2 u
2, λ3 = c1

1

u
− c2 u2

(1c) R2 = [w,0,1]T , R3 = [u,0,−w]T .

∞-dimensional family of fluxes, but no strictly hyperbolic among them!
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What about coordinate frame example?

(3) R1 = [1, 0, 0]T , R2 = [0, 1, 0]T , R3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 = (φ1)′(u), λ2 = (φ2)′(v), λ3 = (φ3)′(w).

(3a) R1 = [1, 0, 0]T , R2 = [0, 1, 0]T .

f =
[
φ1(u,w), φ2(v, w), φ3(w)

]T
, φ1, φ2 : R2 → R; φ3 : R2 → R

λ1 =
∂φ1

∂u
, λ2 =

∂φ2

∂v
.

(3b) R1 = [1, 0, 0]T .

f =
[
φ1(u, v, w), φ2(v, w), φ3(v, w)

]T
φ1 : R3 → R; φ2, φ3 : R2 → R

λ1 =
∂φ1

∂u
.
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How did we find f in the above examples?

• Given a set of independent vector-fields R = {R1, . . . , Rm} on Ω ⊂ Rn,
set up an overdetermined (for n > 2) system of mn 1st order PDE’s on
n + m unknown functions f = [F1, . . . , Fn] : Ω → Rn and λi : Ω → R,
i = 1, . . . ,m.

[Duf ]Ri(u) = λi(u)Ri(u), i = 1, . . . ,m F(R)-system

where [Duf ] =
[
∂F i

∂uj

]
i,j=1,...,n

is the Jacobian matrix.

(Although unknown functions λi, . . . , λm are not differentiated, they are not
free parameters, but must, for n > 1 satisfy some conditions for F(R)-
system to have a solution.)

• Either solve by hand or employ a computer solver (e.g. Maple, “pdsolve”,
and hope that it produces a complete and readable solutions set of F(R)-
system).

• Can we trust these computations?!!
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Can we predict the “size” and the structure of the solution set of F(R)-system
from the geometric properties of the set R = {R1, . . . , Rm}?

Yes, by using integrability theorems: smooth Frobenius and Darboux theorems
(and their generalizations), and as the last resort analytic Cartan-Kähler
theorem.
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Geometry of vector fields

vector fields←→ derivations:

S(u) = [S1(u), . . . , Sn(u)] ←→ s = S1(u)
∂

∂u1
+ · · ·+Sn(u)

∂

∂un
.

φ : Ω→ R, s : φ→ s(φ) = S · gradφ.

Notation: C∞(Ω) - the set of smooth functions on Ω;

X∞(Ω) - the set of smooth vector-fields on Ω.

Covariant derivative: For s, r ∈ X (Ω) define

∇sr := s(R) ∈ X (Ω)

where R is a component vector of r in u-coordinates , and s is applied to
each component.

Lie bracket: [r, s](φ) := r(s(φ))− s(r(φ))

Theorem: [r, s] = ∇rs−∇sr ∈ X (Ω)
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In more intrinsic geometric language:

We defined flat, symmetric connection∇ on Ω, with u being affine coordinates:

∇ ∂
∂ui

∂

∂uj
= 0, ∀i, j = 1, . . . , n.

For all r, s, t ∈ X (Ω),

∇rs−∇sr = [r, s] Symmetry,

∇r∇s t−∇s∇rt = ∇[r,s]t Flatness.
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Partial frames, involutivity, richness

Definitions:

• A set of smooth vector fields R = {r1, . . . , rm}, where m ≤ n, is called a
partial frame on open Ω ⊂ Rn if at each ū ∈ Ω vectors r1|ū, . . . , rm|ū are
linearly independent. If m = n, then R is a frame.

• R is in involution if [ri, rj] ∈ spanC∞R for all 1 ≤ i, j ≤ m.

• R is rich if [ri, rj] ∈ spanC∞{ri, rj} (pairwise in involution).
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Darboux Integrability Theorem [Leçons sur les systèmes
orthogonaux et les coordonnées curvilignes. (1910)]
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Given:

1. subsets α(i) ⊂ {1, . . . , n} for each i = 1, . . . , p .

2. Ω ⊂ Rn and Θ ⊂ Rp open subsets

3. hij(u
1, . . . , un, φ1, . . . , φp), i = 1, . . . , p, j ∈ α(i) smooth functions on

Ω ×Θ → R, with certain combinatorial restrictions on which φ’s each of
the hij may depend so that (2) become algebraic.

Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

∂φi

∂uj
= hij(u, φ(u)) , i = 1, . . . , p; j ∈ α(i). (1)

If integrability conditions

∂

∂uk

(
∂

∂uj
(φi)

)
−

∂

∂uj

(
∂

∂uk
(φi)

)
= 0 for all j, k ∈ α(i) (2)

are identically satisfied on Ω ×Θ after substitution of hij(u, φ) for ∂
∂uj

(φi) for
all i = 1, . . . , p, j ∈ α(i) as prescribed by system (1)

Then ∃! smooth local solution of (1) around ū, for any smooth initial data for
φi prescribed along submanifold Ξi = {uj = ūj, j ∈ αi} ⊂ Rn of dimension
n− |αi|.
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Frobenius Theorem: PDE version: suff. cond. [Deahna (1840)];
nec. cond. [Clebsch (1860)]; diff. form version: [Frobenius (1877)]: vectorfield
formulation: (all equivalent)
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Generalized PDE version [M. Benfield (2016)]:

Given:

1. R = {r1, . . . , rm} – a partial frame in involution on open Ω ⊂ Rn.

2. Θ ⊂ Rp is open

3. hij(u, φ), i = 1, . . . , p, j = 1, . . . ,m smooth functions on Ω×Θ→ R.

Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

rj(φ
i(u)) = hij(u, φ(u)) , i = 1, . . . , p; j = 1, . . . ,m. (3)

If integrability conditions

rk
(
rj(φ

i)
)
−rj

(
rk(φi)

)
=

m∑
l=1

cljkrl(φ) i = 1, . . . , p; j, k = 1, . . . ,m (4)

are identically satisfied on Ω×Θ after substitution of hij(u, φ) for rj(φi) for all
i = 1, . . . , p, j = 1, . . . ,m as prescribed by system (3)

Then ∃! smooth local solution of (3), for any smooth initial data prescribed
along any embedded submanifold Ξ ⊂ Ω of dimension n −m transversal to
R.
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Coordinate-free definition of the Jacobian map:

Definition: The Jacobian of a vector field f on open Ω ⊂ Rn, relative to a flat,
symmetric connection on Ω connection ∇ is a map

Jf : X (Ω)→ X (Ω) defined byJf(r) = ∇rf

If f = F1 ∂
∂u1 +· · ·+Fn ∂

∂un and r = R1 ∂
∂u1 +· · ·+Rn ∂

∂un , where u1, . . . , un

are affine coordinates
(
∇ ∂
∂ui

∂
∂uj

= 0

)
then

Jf(r) = [DuF ]R,

where F = [F1, . . . , Fn]T and R = [R1, . . . , R
n]T .

Definition: f is called hyperbolic on Ω if eigenvector-fields of Jf form a frame
on Ω. (This implies that all eignefunctions of Jf are real)

f is called strictly hyperbolic if, in addition, at every point of Ω all n
eignefunctions of Jf have distinct values.
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Jacobian problem:
Given a partial frame R = {r1, . . . , rm} on open Ω ⊂ Rn (n ≥ m), and a
fixed point ū ∈ Ω, describe the set of smooth vector fields

F(R) = {f ∈ X (Ω′) | ū ∈ Ω′ ⊂ Ω}
s. t. there ∃ smooth functions λi : Ω′ → R for which

Jf(ri) := ∇ri f = λi ri, for i = 1, . . . ,m,

where ∇ is a flat, symmetric connection on Ω.

Elements of F(R) will be called fluxes.

• F(R) is, possibly∞-dimensional, R-vector space.

• scaling invariance: if R̃ = {φ1 r1, . . . , φ
m rm}, where φi : Ω → R are

nowhere zero, then F(R) = F(R̃).

• ∀R, the set F(R) contains a trivial fluxes:

(a u1 + b1)
∂

∂u1
+ · · ·+ (a un + bn)

∂

∂un
, for all a, b1, . . . , bn ∈ R.
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Jacobian problem for rich (partial) framesR = {r1, . . . , rm}:

Recall:

• rich means that [ri, rj] ∈ spanC∞{ri, rj} 1 ≤ i, j ≤ m.

• f ∈ F(R) if ∃λi : Ω→R such that

∇ri f = λi ri, for i = 1, . . . ,m.

Theorem: If R is rich then F(R) contains strictly hyperbolic fluxes iff

∇rirj ∈ spanC∞{ri, rj} for all 1 ≤ i, j ≤ m. (∗)

Under (*), F(R) depends on m arbitrary functions of n −m + 1 (the degree
of freedom of prescribing λ’s) and n functions of n −m variables (the degree
of freedom for prescribing f for given λ’s)
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Jacobian problem for non-involutive partial frames
simplest case: R = {r1, r2} in R3.

Recall:

• non-involutive means that [r1, r2] /∈ spanC∞(R) = spanC∞{r1, r2}.

• f ∈ F(R) if ∃λ1, λ2 : Ω→R such that

∇ri f = λi ri, for i = 1,2.

Theorem: In this case, if F(R) contains strictly hyperbolic fluxes , then

∇r1r2 /∈ spanC∞{ri, rj} and ∇r2r1 /∈ spanC∞{ri, rj} (∗∗)

Under (**), 4 ≤ dim(F(R)) ≤ 8

• we have examples in all dimensions: 4, . . . ,8 and with strictly hyperbolic
fluxes when dimF(R) > 4.

• dimF(R) = 4 iff F(R) has only trivial fluxes.
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Thank you!
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