AIMS 2016, Orlando, FL

Hyperbolic conservation laws with prescribed eigenfields.

Irina Kogan

North Carolina State University

joint work with

Michael Benfield, NC Sate

and

Kris Jenssen, Penn State

Acknowledgement: This project was supported, in part, by NSF grant DMS-1311743 (PI: Kogan) and NSF grant DMS-1311353 (PI: Jenssen),

System of conservation laws

$$u_t + f(u)_x = 0.$$
 (1a)

- *n* equations on *n* unknown functions $u(x,t) \in \Omega \subset \mathbb{R}^n$.
- one space-variable $x \in \mathbb{R}$; one time-variable: $t \in \mathbb{R}$.
- $f(u): \Omega \to \mathbb{R}^n$ smooth flux.

 $u_t + [D_u f] u_x = 0$

(1b)

• (1) is called hyperbolic on Ω if $\forall \overline{u} \in \Omega$ the Jacobian matrix $[D_u f]$ is diagonalizable over \mathbb{R} .

$$\uparrow$$

eigenvector fields $R_1(u), \ldots, R_n(u)$ of $[D_u f]$ are independent at $\forall \overline{u} \in \Omega$ – they comprise an eigenframe.

• $\lambda^1(u), \ldots, \lambda^n(u)$ are eigenfunctions of $D_u f$. If distinct $\forall u \in \Omega$, then (1) is called strictly hyperbolic.

Problem: Given a set independent vector fields $\mathcal{R} = \{R_1, \ldots, R_m\}, 1 \le m \le n$ on open $\Omega \subset \mathbb{R}^n$, find all maps $f : \Omega \to \mathbb{R}^n$ (fluxes), whose Jacobian matrix $[D_u f]$ has \mathcal{R} as a prescribed (partial) set of eigenvector-fields.

Motivation:

- Construct conservations laws with prescribed rarefaction curves and analyze how the geometry of these curves determines behavior of the solutions of conservative these systems.
- Interesting geometric problem on its own.
- Leads to interesting overdetermined systems of PDE's.

Examples: full frames in \mathbb{R}^3 (coordinates (u, v, w))

(1) $R_1 = [0, 1, u]^T$, $R_2 = [w, 0, 1]^T$, $R_3 = [u, 0, -w]^T$ 4-dimensional space of trivial fluxes: $f = a [u, v, w]^T + [b_1, b_2, b_3]^T$ where $a, b_1, b_2, b_3 \in \mathbb{R}$ $Df = a I \implies \lambda^1 = \lambda^2 = \lambda^3 = a$ (2) $R_1 = [v, u, 1]^T$, $R_2 = [-v, u, 0]^T$, $R_3 = [0, 0, 1]^T$ 5-dimensional vector space of fluxes $f = c \left[v^3, u^3, \frac{3}{4} (u^2 + v^2) \right]^T + a \text{ trivial flux}, \quad c \in \mathbb{R}$ $\lambda^{1} = 3 c u v + a, \quad \lambda^{2} = -3 c u v + a, \quad \lambda^{3} = a.$ (3) $R_1 = [1, 0, 0]^T$, $R_2 = [0, 1, 0]^T$, $R_3 = [0, 0, 1]^T$ $f = \left[\phi^1(u), \phi^2(v), \phi^3(w)\right]^T, \quad \phi^i \colon \mathbb{R} \to \mathbb{R} \text{ arbitrary}$ $\lambda^{1} = (\phi^{1})'(u), \quad \lambda^{2} = (\phi^{2})'(v), \quad \lambda^{3} = (\phi^{3})'(w).$

What if we prescribe incomplete (partial) eigenframe?

(1)
$$R_1 = [0, 1, u]^T$$
, $R_2 = [w, 0, 1]^T$, $R_3 = [u, 0, -w]^T$ only trivial fluxes.

(1a)
$$R_1 = [0, 1, u]^T, R_2 = [w, 0, 1]^T$$
 again only trivial fluxes!
(1b) $R_1 = [0, 1, u]^T,$ $R_3 = [u, 0, -w]^T.$
 $f = c_1 \begin{bmatrix} \ln(u) \\ 0 \\ \frac{1}{2} \left(\frac{w}{u} - v\right) \end{bmatrix} + c_2 \begin{bmatrix} -\frac{1}{3}u^3 \\ uw \\ wu^2 \end{bmatrix} + a \begin{bmatrix} u \\ v \\ v \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
 $F^1 = c_1 \ln(u) - \frac{1}{3}c_2 u^3, \quad F^2 = c_2 u w, \quad F^3 = \frac{1}{2}c_1 \left(\frac{w}{u} - v\right) + c_2 u^2.$
 $\lambda^1 = c_2 u^2, \quad \lambda^3 = c_1 \frac{1}{u} - c_2 u^2$
(1c) $R_2 = [w, 0, 1]^T, R_3 = [u, 0, -w]^T.$

 ∞ -dimensional family of fluxes, but no strictly hyperbolic among them!

What about coordinate frame example?

(3)
$$R_1 = [1, 0, 0]^T$$
, $R_2 = [0, 1, 0]^T$, $R_3 = [0, 0, 1]^T$
 $f = \left[\phi^1(u), \phi^2(v), \phi^3(w)\right]^T$, $\phi^i \colon \mathbb{R} \to \mathbb{R}$ arbitrary
 $\lambda^1 = (\phi^1)'(u), \quad \lambda^2 = (\phi^2)'(v), \quad \lambda^3 = (\phi^3)'(w).$
(3a) $R_1 = [1, 0, 0]^T, \quad R_2 = [0, 1, 0]^T.$
 $f = \left[\phi^1(u, w), \phi^2(v, w), \phi^3(w)\right]^T, \quad \phi^1, \phi^2 \colon \mathbb{R}^2 \to \mathbb{R}; \quad \phi^3 \colon \mathbb{R}^2 \to \mathbb{R}$
 $\lambda^1 = \frac{\partial \phi^1}{\partial u}, \quad \lambda^2 = \frac{\partial \phi^2}{\partial v}.$
(3b) $R_1 = [1, 0, 0]^T.$
 $f = \left[\phi^1(u, v, w), \phi^2(v, w), \phi^3(v, w)\right]^T \quad \phi^1 \colon \mathbb{R}^3 \to \mathbb{R}; \quad \phi^2, \phi^3 \colon \mathbb{R}^2 \to \mathbb{R}$
 $\lambda^1 = \frac{\partial \phi^1}{\partial u}.$

How did we find f in the above examples?

• Given a set of independent vector-fields $\mathcal{R} = \{R_1, \ldots, R_m\}$ on $\Omega \subset \mathbb{R}^n$, set up an <u>overdetermined</u> (for n > 2) system of m n 1st order PDE's on n + m unknown functions $f = [F^1, \ldots, F^n] \colon \Omega \to \mathbb{R}^n$ and $\lambda^i \colon \Omega \to \mathbb{R}$, $i = 1, \ldots, m$.

$$\begin{bmatrix} D_u f \end{bmatrix} R_i(u) = \lambda^i(u) R_i(u), \quad i = 1, \dots, m$$

where $\begin{bmatrix} D_u f \end{bmatrix} = \begin{bmatrix} \frac{\partial F^i}{\partial u^j} \end{bmatrix}_{i,j=1,\dots,n}$ is the Jacobian matrix.

(Although unknown functions $\lambda^i, \ldots, \lambda^m$ are not differentiated, they are not free parameters, but must, for n > 1 satisfy some conditions for $\mathcal{F}(\mathcal{R})$ -system to have a solution.)

- Either solve by hand or employ a computer solver (e.g. Maple, "pdsolve", and hope that it produces a complete and readable solutions set of *F*(*R*)system).
- Can we trust these computations?!!

Can we predict the <u>"size</u>" and the <u>structure</u> of the solution set of $\mathcal{F}(\mathcal{R})$ -system from the geometric properties of the set $\mathcal{R} = \{R_1, \ldots, R_m\}$?

Yes, by using integrability theorems: smooth Frobenius and Darboux theorems (and their generalizations), and as the last resort analytic Cartan-Kähler theorem.

Geometry of vector fields

vector fields \longleftrightarrow derivations:

$$S(u) = [S^{1}(u), \dots, S^{n}(u)] \quad \longleftrightarrow \quad \mathbf{s} = S^{1}(u)\frac{\partial}{\partial u^{1}} + \dots + S^{n}(u)\frac{\partial}{\partial u^{n}}.$$

$$\phi \colon \Omega \to \mathbb{R}, \quad \mathbf{s} \colon \phi \to \mathbf{s}(\phi) = S \cdot \operatorname{grad} \phi.$$

Notation:

 $C^{\infty}(\Omega)$ - the set of smooth functions on Ω ; $\mathcal{X}^{\infty}(\Omega)$ - the set of smooth vector-fields on Ω .

Covariant derivative: For $\mathbf{s}, \mathbf{r} \in \mathcal{X}(\Omega)$ define

$$\nabla_{\mathbf{s}}\mathbf{r} := \mathbf{s}(R) \in \mathcal{X}(\Omega)$$

where R is a component vector of \mathbf{r} in <u>u-coordinates</u>, and \mathbf{s} is applied to each component.

Lie bracket: $[\mathbf{r}, \mathbf{s}](\phi) := \mathbf{r}(\mathbf{s}(\phi)) - \mathbf{s}(\mathbf{r}(\phi))$

Theorem: $[\mathbf{r}, \mathbf{s}] = \nabla_{\mathbf{r}} \mathbf{s} - \nabla_{\mathbf{s}} \mathbf{r} \in \mathcal{X}(\Omega)$

In more intrinsic geometric language:

We defined flat, symmetric connection ∇ on Ω , with u being affine coordinates:

$$abla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = 0, \quad \forall i, j = 1, \dots, n.$$

For all $\mathbf{r}, \mathbf{s}, \mathbf{t} \in \mathcal{X}(\Omega)$,

$$abla_{\mathbf{r}}\mathbf{s} -
abla_{\mathbf{s}}\mathbf{r} = [\mathbf{r}, \mathbf{s}]$$
Symmetry,
 $abla_{\mathbf{r}}
abla_{\mathbf{s}} \mathbf{t} -
abla_{\mathbf{s}}
abla_{\mathbf{r}} \mathbf{t} =
abla_{[\mathbf{r}, \mathbf{s}]} \mathbf{t}$ Flatness.

Partial frames, involutivity, richness

Definitions:

- A set of smooth vector fields $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}$, where $m \leq n$, is called a <u>partial frame</u> on open $\Omega \subset \mathbb{R}^n$ if at each $\overline{u} \in \Omega$ vectors $\mathbf{r}_1|_{\overline{u}}, \dots, \mathbf{r}_m|_{\overline{u}}$ are linearly independent. If m = n, then \mathcal{R} is a <u>frame</u>.
- \mathcal{R} is in <u>involution</u> if $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}} \mathcal{R}$ for all $1 \leq i, j \leq m$.
- \mathcal{R} is <u>rich</u> if $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}}\{\mathbf{r}_i, \mathbf{r}_j\}$ (pairwise in involution).

Darboux Integrability Theorem [Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. (1910)]

Given:

- 1. subsets $\alpha(i) \subset \{1, \ldots, n\}$ for each $i = 1, \ldots, p$.
- 2. $\Omega \subset \mathcal{R}^n$ and $\Theta \subset \mathbb{R}^p$ open subsets
- 3. $h_j^i(u^1, \ldots, u^n, \phi^1, \ldots, \phi^p)$, $i = 1, \ldots, p, j \in \alpha(i)$ smooth functions on $\Omega \times \Theta \to \mathbb{R}$, with certain combinatorial restrictions on which ϕ 's each of the h_j^i may depend so that (2) become algebraic.

<u>Consider</u> a system of PDE's on $(\phi^1, \dots \phi^p)$: $\Omega \to \Theta$:

$$\frac{\partial \phi^i}{\partial u^j} = h^i_j(u, \phi(u)), \quad i = 1, \dots, p; \ j \in \alpha(i).$$
(1)

If integrability conditions

$$\frac{\partial}{\partial u^k} \left(\frac{\partial}{\partial u^j} (\phi^i) \right) - \frac{\partial}{\partial u^j} \left(\frac{\partial}{\partial u^k} (\phi^i) \right) = 0 \text{ for all } j, k \in \alpha(i)$$
 (2)

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_j^i(u, \phi)$ for $\frac{\partial}{\partial u^j}(\phi^i)$ for all $i = 1, \ldots, p, \ j \in \alpha(i)$ as prescribed by system (1)

<u>Then</u> \exists ! smooth local solution of (1) around \bar{u} , for any smooth initial data for ϕ^i prescribed along submanifold $\Xi_i = \{u^j = \bar{u}^j, j \in \alpha_i\} \subset \mathbb{R}^n$ of dimension $n - |\alpha_i|$.

Frobenius Theorem: PDE version: suff. cond. [Deahna (1840)]; nec. cond. [Clebsch (1860)]; diff. form version: [Frobenius (1877)]: vectorfield formulation: (all equivalent)

Generalized PDE version [M. Benfield (2016)]:

Given:

- 1. $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m} a$ partial frame in involution on open $\Omega \subset \mathcal{R}^n$.
- 2. $\Theta \subset \mathbb{R}^p$ is open

3. $h_j^i(u, \phi)$, i = 1, ..., p, j = 1, ..., m smooth functions on $\Omega \times \Theta \to \mathbb{R}$. <u>Consider</u> a system of PDE's on $(\phi^1, ..., \phi^p) \colon \Omega \to \Theta$:

$$\mathbf{r}_{j}(\phi^{i}(u)) = h_{j}^{i}(u,\phi(u)), \quad i = 1,\dots,p; \ j = 1,\dots,m.$$
 (3)

If integrability conditions

$$\mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) - \mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) = \sum_{l=1}^m c_{jk}^l \mathbf{r}_l(\phi) \quad i = 1, \dots, p; \ j, k = 1, \dots, m$$
(4)

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_j^i(u, \phi)$ for $\mathbf{r}_j(\phi^i)$ for all $i = 1, \dots, p, \ j = 1, \dots, m$ as prescribed by system (3)

<u>Then</u> \exists ! smooth local solution of (3), for any smooth initial data prescribed along any embedded submanifold $\Xi \subset \Omega$ of dimension n - m transversal to \mathcal{R} .

Coordinate-free definition of the Jacobian map:

Definition: The Jacobian of a vector field f on open $\Omega \subset \mathbb{R}^n$, relative to a flat, symmetric connection on Ω connection ∇ is a map

 $\mathit{J} f \colon \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ defined by $\mathit{J} f(r) = \nabla_r f$

If
$$\mathbf{f} = F^1 \frac{\partial}{\partial u^1} + \dots + F^n \frac{\partial}{\partial u^n}$$
 and $\mathbf{r} = R^1 \frac{\partial}{\partial u^1} + \dots + R^n \frac{\partial}{\partial u^n}$, where u^1, \dots, u^n
are affine coordinates $\left(\nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = 0 \right)$ then
 $J\mathbf{f}(\mathbf{r}) = [D_u F] R$,
where $F = [F^1, \dots, F^n]^T$ and $R = [R_1, \dots, R^n]^T$.

Definition: f is called <u>hyperbolic</u> on Ω if eigenvector-fields of Jf form a frame on Ω . (This implies that all eignefunctions of Jf are real)

f is called strictly hyperbolic if, in addition, at every point of Ω all *n* eignefunctions of *J*f have distinct values.

Jacobian problem:

<u>Given</u> a partial frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$ on open $\Omega \subset \mathbb{R}^n$ $(n \ge m)$, and a fixed point $\overline{u} \in \Omega$, <u>describe</u> the set of smooth vector fields

 $\mathcal{F}(\mathcal{R}) = \{\mathbf{f} \in \mathcal{X}(\Omega') \, | \, \bar{u} \in \Omega' \subset \Omega\}$

s. t. there \exists smooth functions $\lambda^i \colon \Omega' \to \mathbb{R}$ for which

$$J\mathbf{f}(\mathbf{r}_i) := \nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{for } i = 1, \dots, m,$$

where ∇ is a flat, symmetric connection on Ω .

Elements of $\mathcal{F}(\mathcal{R})$ will be called <u>fluxes</u>.

- $\mathcal{F}(\mathcal{R})$ is, possibly ∞ -dimensional, \mathbb{R} -vector space.
- scaling invariance: if $\tilde{\mathcal{R}} = \{\phi^1 \mathbf{r}_1, \dots, \phi^m \mathbf{r}_m\}$, where $\phi^i \colon \Omega \to \mathbb{R}$ are nowhere zero, then $\mathcal{F}(\mathcal{R}) = \mathcal{F}(\tilde{\mathcal{R}})$.
- $\forall \mathcal{R}$, the set $\mathcal{F}(\mathcal{R})$ contains a trivial fluxes:

$$(a u^{1} + b^{1})\frac{\partial}{\partial u^{1}} + \dots + (a u^{n} + b^{n})\frac{\partial}{\partial u^{n}}, \text{ for all } a, b^{1}, \dots, b^{n} \in \mathbb{R}.$$

Jacobian problem for rich (partial) frames $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$:

Recall:

- <u>rich</u> means that $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}} \{\mathbf{r}_i, \mathbf{r}_j\} \ \mathbf{1} \leq i, j \leq m$.
- $\mathbf{f} \in \mathcal{F}(\mathcal{R})$ if $\exists \lambda^i \colon \Omega \to \mathcal{R}$ such that

$$\nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{for } i = 1, \dots, m.$$

Theorem: If \mathcal{R} is rich then $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes iff

$$abla \mathbf{r}_i \mathbf{r}_j \in \operatorname{span}_{C^{\infty}} \{ \mathbf{r}_i, \mathbf{r}_j \} \text{ for all } 1 \le i, j \le m.$$
 (*)

Under (*), $\mathcal{F}(\mathcal{R})$ depends on *m* arbitrary functions of n - m + 1 (the degree of freedom of prescribing λ 's) and *n* functions of n - m variables (the degree of freedom for prescribing f for given λ 's)

Jacobian problem for non-involutive partial frames simplest case: $\mathcal{R} = \{\mathbf{r}_1, \mathbf{r}_2\}$ in \mathbb{R}^3 .

Recall:

• <u>non-involutive</u> means that $[\mathbf{r}_1, \mathbf{r}_2] \notin \text{span}_{C^{\infty}}(\mathcal{R}) = \text{span}_{C^{\infty}}\{\mathbf{r}_1, \mathbf{r}_2\}.$

• $f \in \mathcal{F}(\mathcal{R})$ if $\exists \lambda^1, \lambda^2 \colon \Omega \to \mathcal{R}$ such that

$$\nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{ for } i = 1, 2.$$

Theorem: In this case, if $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes, then $\nabla_{\mathbf{r}_1}\mathbf{r}_2 \notin \text{span}_{C^{\infty}}\{\mathbf{r}_i,\mathbf{r}_j\} \text{ and } \nabla_{\mathbf{r}_2}\mathbf{r}_1 \notin \text{span}_{C^{\infty}}\{\mathbf{r}_i,\mathbf{r}_j\}$ (**) Under (**), $4 \leq \dim(\mathcal{F}(\mathcal{R})) \leq 8$

- we have examples in all dimensions: $4, \ldots, 8$ and with strictly hyperbolic fluxes when dim $\mathcal{F}(\mathcal{R}) > 4$.
- dim $\mathcal{F}(\mathcal{R}) = 4$ iff $\mathcal{F}(\mathcal{R})$ has only trivial fluxes.

- Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed eigencurves. *J. of Hyperbolic Differential Equations (JHDE)* Vol. 7, No. 2., (2010) pp. 211–254.
- 2. Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws *Communications in PDE's*, No. 37, (2012), pp. 1096 – 1140.
- 3. Benfield, M., Some Geometric Aspects of Hyperbolic Conservation Laws Ph.D. thesis, NCSU, (2016)
- 4. Benfield, M., Jenssen, H. K., Kogan, I. A., Jacobians with prescribed eignvectors, in preparation.

Thank you!