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Outline:
Definitions and examples of invariants

Applications:
— congruence problem for curves;

— symmetry reduction of variational problems;
Structure theorems

Computation via moving frames (classical, generalized, inductive and
algebraic methods)



Group actions and invariants:




Group actions

An actionof agroup Gonaset Zisamap ®: G x Z — Z such that

. ®(e,z) =z, VzelZ.

ii. ® (g1, P(92,2)) = P(9192,2), Vz € Zand Vgy,92 € G.

Example: Let M (n,K) = {n x n matrices over a field K}.
A group GL(n,K) = {A € M(n,K)|det(A) # 0} acts on K™ by:

®(A,z) = Az, VA € GL(n,K) and z € K".
Notation: G ~ Z and ®(g,z) = g - z.



We will consider

e G —smooth Lie group or algebraic group over a field K

e Z — smooth manifold or algebraic variety

e ® — smooth map or polynomial or rational map

A local action of a topological group G on a topological set Z is a map
d: 2 — Z defined on some open subset €2 C G x Z containing e X Z,
such that

. ®(e,z) =z, VzelZ.

i. (g1, P(92,2)) = P(9192,2), Vg1,92,2z such that (g2,z) € Q2
and (gl gQ,Z) c Q.



Invariants:

A function F' on Z is invariant under ¢ ~ Z if

F(g-z) = F(z), Vze ZandVgeq.

A function F', defined on an open subset U/ of a topological set Z, is locally
invariant under G ~ Z if

F(g-z) = F(z), V(g,z) €S2
for some open subset €2 C G x Z suchthate x U C S2.



Invariants under rotations on R2:

SO(2,R) ~ R? by rotations  Invariants

e Any smooth invariant on
R2 — {(0,0)} is functions of

” r=\/x2—|—y2.

e Any polynomial invariant on R?

QQ " x is functions of r2 = z2 + 2.

Orbits are level sets of r.




Invariants under rotations and translations on R2:
Action: SE(2,R) = SO(2,R) x R?2 ~ R? by rotations and translations.
R? is a single orbit.

Invariants: constant functions.



Differential invariants for planar curves ~(t) = (x(¢), y(¢)) under
rotations and translations

SE(2,R)-action on R? induces an action on (), y(t), (), y(t), ... (jet
bundle of curves in R?).

e Unit tangent: T = (flfg f{z) 1 N
T =1=
Infinitesimal arc-length: ds =
Vi2 4 g2 dt NN
e Unitnormal: N L T, |[N| = 1.
e The Frénet equation:%L = kN _
X

o Generators of the differential algebra of invariants: and -4 7., Where
£ \/7 =< is an invariant differential operator.

e Fundamental local diff. invariants:
dr

RKyRKsg — —,Kgsy ...

ds’ 3



An integral invariant for planar curves ~(t) = (z(t),y(t)), t € [a, b]

Notation: X (¢t) = x(t) — z(a), Y () = y(t) — y(a),

1OU@) =L v(r)dXx(r) — 3X () Y (1)

110:1] represnets the signed area
between the curve and a secant.
It is invariant under SA(2,R) D
SE(2,R) action.




An discrete invariants for quadratic forms

The standard action of GL(n,C) on C™ induces an action on the space
vV of homogeneous polynomials of degree d in n variables:

A-P(x)=P (A—lx) VA € GL(n,C) and x € C™.

There are well known canonical forms for GL(n,C) ~ V3"

x2 4422 fork=0,...n.

k is a discrete invariant for GL(n,C) ~ V.
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Types of the invariants:

local smooth;

polynomial, rational, and algebraic;

differential;

integral;

integro-differential;

discrete;
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Applications:

Equivalence (congruence) problems for
— sub-manifolds (in particular curves and surfaces)
— for polynomials

— differential equations

Symmetry reduction of
— differential equations
— variational problems
— algebraic equations

Invariant geometric flows

12



Equivalence problem for curves
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curves

Equivalence problem for curves in R™.

e Problem: Given an action of a group G on R™ and curves ~1 : [a, b]
— R™ and v5: [¢,d] — R"™ decide whether there exists g € G such

that

Image(y1) = g - Image(2).
e If such g € G exists then 1 and v, are called G-equivalent,

or g-congruent:

71 = 72-
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Transformations on R? commonly appearing in computer image

processing:

Special Euclidean (orientation preserving rigid motions):

X = cos(gp)xr —sin(¢p)y + a, Y =sin(¢)x 4+ cos(d)y + b.

Euclidean (rigid motions):

X = cos(¢p)x —sin(¢p)y + a, Y = e(sin(¢)x + cos(¢p)y) + b

e = +1
similarity

X = A(cos(¢)z —sin(¢)y) +a, Y = eA(sin(¢)z + cos(¢)y) + b

e==21,\#0.
equi-affine (area and orientation preserving):

X=ar+pPy+aY=yr+d0y+b a0 —py=1

affine:

X=ax+py+a, Y =vx+0y+b|lad— By F

O
Aty _ az+Byta —_ vYx+oy+b a p
projective: | X = oty Y = LSRR det( g 2

o o

) #o

15
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Euclidean and equi-affine frame

Euclidean geometry in R
SE(2,R) = SO(2,R) x R?

Equi-affine geometry in R?
SA(2,R) = SL(2,R) x R2

Moving Frame:

/ﬁﬁ\ﬁ

T = (g—ﬁ%)  NLT, |N| =1

C

_ (dx dy _dT
T—(@,@), N = G

Infinitesimal arc-length:

|T|=1=>ds=\/1—|—y%da:

det|T'N| =1 = da = y%é3 dx

Fundamental differential invariants:

%:KJN

Y

— dkK
Iis—%,lﬁlss,...

16



curves

Differential invariants for planar curves

Let G be an »-dim’l Lie group acting on the plane. For almost all actions 4

e a local differential invariant & (G-curvature) of differential order r — 1;

e an Invariants differential form w (infinitesimal G-arclength) of
differential order at most » — 2 and the dual invariant differential
operator D.

s.t. any other local differential invariant on an open subset of the jet space
J(R?, 1) is a smooth function of ¢, D€, D2E, ...

17



curves

Relations between invariants of a group and its subgroup™

| | L . _ . L g
o special Eucl.: x = WE=29) gs — /32 4 2qr, & = 1
(j;2_|_y2)% \/ ds /52442 dt
e 3k (kss+H3K3)—5 K2 _1/3 d _ 1 d
e equi-affine: = o 5m o da = r13ds, Jo= 50

Amtiae o Oltacaba—T pa,—9uap 5 1/3 d _ 1 d
[ prOJeCt|Ve. n — aca a6’u8/§a a , dp — U dOé, d_,O — F do
o o

Definition: Curves for which G-curvature or G-arclength are undefined are
called G-exceptional.

*see (Kogan 2001, 2003) for a general method of deriving invariants of a group in terms

of invariants of its subgroup
18



curves

Congruence criteria for curves with specified initial point

e Theorem: Two non G-exceptional curves are G-congruent iff their G-
curvatures as functions of G-arclength coincide.

For v1(t), t € [a,b] — R2 and vo(7), 7 € [¢,d] — RZ2:

dge G s.t. g-v1(a) = v2(c) and I'mage(y1) = g - Image(vy2)

)

t T
fu(s) = Eha(s2), where s1(8) = [ wlyy andso(r) = [ iy
e Applicable only if:

— initial point is specified

— arc-length reparametrization is feasible in practice

19



g-curvature under reparametrization

Euclidean example: x = ~2=29)_.
(:132—|—y2)3

~v(t) = (¢, cost), t € [0, ]

iy (6(1) = — ey

3(m) = (1, cos /1), T € [0,77]

_ L cos(+/1)
w5(T) = — s

3333333

kly(9(7)) = kl5(7) where t = ¢(7) = /7.

20



curves

Differential signature for planar curves

(Calabi et al. (1998))
o Let £ be G-curvature, w-infinitesimal G-arclength and £, = D4€&.

e Definition: The §G-signature of a non-exceptional curve ~(t) =
(a:(t),y(t)),t € [a,b] is the image of a parametric curve

(£l (®), €l (®)):
Sy(t) = {(€l(1), Ewly (D)) |t € [a,B]}.

e G-congruence criterion for non-exceptional curves

Y

71

2

2
U1 under certain conditions

Syp =

»

2
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curves

Example 1 of Euclidean differential signature:

v(t) = (Vt, cos/t),

t € [0, 2]

3(t) = (t — g cost, gt + 2 cost),

t € [0, «]

Images of v and 7 in R?

0.5

I

-0.5

Signatures (x2, x2) for v and 5

0.8 -
0.7 —
0,6—-
2 0.5—:
s 04
0.3 -
02

0.1+

0

T T T T T T T T T 1

0 0.2 0.4 0.6 0.8 1
2

K
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Example 2 of Euclidean differential signature:

~v(t) = (¢, cost), t € [0,n] | 7(t) = (¢, cost), t € [0,27]

Images of v and 7 in R? Signatures (x2, k2) for v and 5

] 0.8

: 0.7

y 0.5 0.6:
1 2 0.5

] K ]

S 0.4

0 . . . |

0.3

0.2 4

-0.5 0.1+

o—T—————— T T 71 T 1
1

-1.0-

Images of signatures of v and + coincide due to reflection symmetry of
,'3’/

Signature for ~ is traced 2 times when ¢ € [0, 7] due to symmetry under
rotations by 7 around the point (5, 0).

Signature for 7 is traced 4 times when t € [0, 2 «]! s



curves

Local G-congruence criterion for non-exceptional curves

71

locally congruent to ~-

i

and

for smooth curves

S~, overlap

24




curves

Advantages and disadvantages of differential signature

the construction extends to curves and higher dimensional
submanifolds of R™ under majority of transformations.

independent of parametrization

can be used for local comparison

can be used to detect symmetries

depends on derivatives of high order (for planar curves of order =
dim G) == very sensitive to high frequency perturbations

25



Sensitivity of differential signature to high frequency perturbation:

Images of v = (¢, cost) and 7 = (¢, cos(t) + 155 Sin(100¢), t € [0, ]

-0.51

0.8 -

0.7 4

0.6

0.5

0.3

0.2

0.1

\
0 0?2 0?4 0?6 0?8 i 0 2000 4000 6000 8000 10000

K K 26



Integral variables for planar curves v(t) = (x(t),y(¢t)), t € [a, b].
(Hann and Hickman (2002)

e G-action on R?2 induces an action on z(0), y(0), z(t), y(¢), and

(1) = [ () y(r) de(n).

a

e Example: ifx — x + y, and y — y then

. t ' ;
l(0) — [ () + y(F () d () + y()

o yliil(t) = [t x(r) y(+) dy(r) can be expressed in terms of
z(a), y(a), z(t), y(), ™) = [I a(r)*F y(r) da(r)

via integration-by-parts.

e i+ jis called the order of integral variable z[%7].
27



Integral invariants for planar curves

e An affine action can be prolonged to an integral jet bundle of
planar curves which is parametrized by z(a), y(a), z, vy, %71, where
j>0,i>0.

e Integral invariants are invariant functions on the integral jet bundle.

e Moving frame method can be applied to derive fundamental or
generating sets of integral invariants.

e In (Feng, Kogan, Krim (2010)) we derived Euclidean and affine
fundamental sets of integral invariants for curves in R? and R3 via
inductive variation of the moving frame method.

*Integral invariants defined here are not the same as moment invariants (Taubin and

Cooper (1992))
28



Examples of integral invariants for planar curves

v(t), tela,b]

e Notation: X(t) = x(t) — z(a), Y () = y(t) — y(a),

.. t ) )
x 0l = / X() Y (1) dX (7).
e Invariants: ¢

0-th order r = \/X2 + Y2 - Es-invariant
1-st order 7101 = x 1011 — 1x ¥y -(SA; © SEp)-invariant.

2-nd order x 1L =y x[11 — Ix x10.2] _ 1x2y2.
SA> and Ex-invariant

« 1102l =y xl02 ox x[L1 — 1xy3 _2x3y
E>-invariant

29



curves

Geometric interpretation of
0y =x01 _Ixy = [t y(r)dx(r) - 3X () Y (1)

The signed area between
the curve and a secant,
originating at the initial point.

(r, I10:1]).signature is
] the graph of the length
001, of a secant vs. the area

between the curve and the
secant. It is independent of
ST parametrization.

30



Examples of integral signatures for planar curves

e SE(2)-signature <r, 1[0’1]>

e E(2)- signatures (r, (I[0>1])2) or ('r, 1[171]>.

S _ [0,1]12 1,1
e similarity signature: ((I T4]) : I[r4 ])

o SA(2)-signature (71011, 111.11)

*see ((Feng, Kogan, Krim (2010))) for signatures of curves in R3

curves

31




curves

Reasonable behavior under high frequency perturbation:

v(t) = (¢, cost),
t € [0, 7]

F(t) = (t, cos(t) + 155 sin(1001¢),

t € [0, ]

Images of v and 7 in R2

-0.5

SE(2,R)- signatures (r, I7)

0.3

for v and 5
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curves

Signature (r, I7) for v(¢t) = (t,cos(t)) fort € [0,6 7]:

-14 4

_16_

-18
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curves

Equivalence theorem for curves with specified initial points:

~

71 72

Iy 1 conditions ?

integral signature|,;, = integral signature|,

Remark:
e |} follows from the definition of invariants

e {)is proved for

— SE(2,R)-signature (r, I[Ovll)

— E(2,R)- signature (r, 1[1’1]).

34



curves

Advantages and disadvantages of integral signature
extends to curves in R™ (see Feng, Kogan, Krim (2010) for curves in R3).
independent of parametrization
tolerant to data uncertainty and perturbations
requires an identified initial point
possible, but problematic use for local comparison

no straightforward generalization to rational action (i.e. projective
actions), see Hann and Hickman (2002) for a numeric approach.)

35



equivalence problems

General framework for solving an equivalence problem for an action
of Gonaset Z

e find a finite set of invariants that separates generic orbits. i.e. orbits
on an open dense subset U/ C Z.

e characterize orbits on Z — U (possibly by another set of invariants).

36



A glimpse into the symmetry reduction

37



symmetry reduction

General framework for symmetry reduction

Definition: A group of transformations G on the space of independent
and dependent variables is a Lie symmetry of a differential equation (or
a variational problem) if each element of G maps a solution to a solution.

Theorem: (S. Lie (1897))

e (almost) any G-symmetric system of differential equations can be
written in terms of differential G-invariants.

e (almost) any G-symmetric variational problem can be written in terms
of differential G-invariants and G-invariant differential forms.
38



symmetry reduction

Example: SE (2, R)-invariant variational problem for y = u(x):

Llu] = f2(1_|_u2)5/2d — Llr] = f%/«:z ds

JE:%_(dd)auﬂL(da:)Qagmm 7

A=0 = kst 3x3 =0

2u4(1—|—u%)2 20“1’&2’&3(1""&%)"‘30’&2 w12 —5’LL2
2 (14 u12)>

JANE—

(ul :u:ﬁa---au4:u:pxmm)

39



symmetry reduction

G-invariant Euler-Lagrange operator for planar curves y = u(x):

[ L(z,u,u1,...,up)de & [L(DE,..., D) w
! _ !

E(L) =) (—ddxy gi =0 & [A*E(L) - B*H(L)] =0,

)

where

£(L) = Z( Do) 2 85 H(L) = Zstw)J

1>32>0

8&

e A*™ and B* — G-invariant diff. operators, computable by differentiation
and linear algebra.

e general formula for any number of independent variables and unknown
functions is obtained in Kogan and Olver(2003)

e Completely algorithmic — iVB package (IK) in MAPLE.

40



Structure theorems

41



Structure theorems of algebraic invariant theory:

e Hilberttheorem (1890): If an algebraic reductive group G acts regularly
on an affine variety Z then the ring of polynomial invariants K[2]Y is
finitely generated.

K[2]9 = Klug,...,ug\R,
where R is a finitely generated ideal of syzygies.

e |f an algebraic group G acts rationally on an affine variety Z of
dimension m then the field of rational invariants K(2)Y is finitely
generated.

If dim Z = m and maxz dim Oz = s, then the transcendence degree
of K(2)Y : Kis m — s.

e Rosenlicht theorem (1956): Rational invariants separate orbits on an
open dense subset of Z. Any separating subset of rational invariants

IS generating.
g g 42



e Problems:
— Find (minimal) generating set of K[Z2]Y and K(2)9.

— Describe the structure of K[2]Y and K(Z)Y (find syzygy ideal,
transcendence basis, ...).

42



Theorem of smooth invariant theory:

e Definition: Let G be a smooth Lie group acting on a smooth manifold
Z. A collection of local invariants on an open subset &/ C Z forms
a fundamental set if they are functionally independent, and any local
invariant on U/ can be expressed as a smooth function of the invariants
from this set.

e Frobenious integrability theorem = If dim Z = m and all orbits have
the same dimension s, then for each point z € Z there exists a
fundamental set of m — s local smooth invariants defined on an open
neighborhood 4.

e Problem:

— Find a fundamental set of invariants.
43



Structure theorem of differential invariant theory:

Let G be a Lie group acting on an n-dim’l manifold Z. For 1 < p <
n d!'prolongation of G-action to the jet bundle J(Z,p) of p-dim’l sub-
manifolds of Z.

Tresse theorem (1894): Local smooth invariants on J(Z,p) have a
structure of finitely generated differential algebra™:

e 3{71,..., 7%} - invariant function on 7 (Z, p)
e ID,,..., Dy - invariant differential operators

such that any invariant Z on 7 (Z, p) can be expressed as
T = F(...,DJ(IZ),...)

*in general it is a non-free algebra with non-commutative derivations
44



Problem:
e Find (minimal) set of generators

e Finite (minimal) set of generating syzygies H < ., D(TH, .. ) =0

44



Structure theorems of integral invariant theory ???

or may be

Structure theorems of integro-differential invariant theory ???

45



computation

Invariants via moving farmes

Classical moving frames (Frénet (1847), Serret (1851), Darboux (1887), Cartan
(1935))

Generalization of moving frame construction to arbitrary Lie group
actions on manifolds (Fels and Olver (1999))

Inductive and recursive variations (Kogan(2001, 2003))

Algebraic formulation (Hubert, Kogan(2007))
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Euclidean and affine moving frames for curves

Euclidean geometry in R
SE(2) = SO(2) x R?

Equi-affine geometry in R?
SA(2) = SL(2) x R?

Moving Frame:

AN
-
T = (9,9, NLT, |N| =1

ds’ ds

Infinitesimal arc-length:

|T|=1:>ds=\/1—|—y%da:

det|T’'N| =1 = da = y;é?’ dx

Fundamental differential invariants:

dl' __ dN __
_ dr du

Ha = g, Haas - - - -

47



Observe that in the affine and in the Euclidean case:

e Moving frame defines a map from the jets of curve to G, i. e.
([T, N], (z,y)) € G.

e Invariants can be obtained from the pull-backs of a basis of invariant
differential forms on G by p.

Generalizations to submanifolds of homogeneous spaces (Cartan (1935),
Griffiths (1974), Green(1978), Chern (1985))

Definition. (Fels and Olver (1999)) Given G ~ Z, a (local) moving frame is an
equivariant smooth (local) map p: Z — G.

R 1
G—7—g¢

g 48



Theorem. (Fels and Olver (1999))

3 loc. moving frame o(z)

G action is locally free* and /
3 local cross-section K on Z: /

T|z’C@T|zOZ == T|ZZ, \v// & IC. / K

p . Z — @G is defined by the condition p(z) -z € K

p(g-2)(g-2z) = p(z) - z, freeness == p(g - z) = p(z)g~*
U

p Is a G-equivariant map.

* The dimension of each orbit = dim G.
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computation

Implicit invariantization .:
Let z1, ..., 2™ be loc. coordinates on Z and K be a loc. cross-section.
Functions: Vf € F(Z) dlloc.inv..f € F(Z)s.t. vf|xc = flk.

1 m :
)
{e(z%),...,t(2"™)} D fundamental set of inv.

If the G-action is locally free then

o differential forms: VQQ € A¥  3Jlloc.inv. 1Q € AF.s. 1. 1Q|x = Q|x.
ww = dzl, ..., wy = 1dz™ is the dual basis of invariant differential 1-
forms

e vector fields: V vector field V on Z 3! loc. inv. vector field
LV s.t. LV|]C — V‘IC-

D1 = (%) ,.o..,Dnp =1 (3‘%) is a basis of invariant differential

operators (non-commutative in general)
50



computation

Explicit invariantization steps:

1. Write down a system of equations that describes g € G which brings
an arbitrary point z € Z to the cross-section;

2. Solve the system for the group parameters (¢ = p(z));

3. Replace g with p(z) in the pull-back of a function (or a form) by the
action of g € G.

Constructive idea in the algebraic setting is to replace steps 2 and 3 with
elimination of the group parameters (Hubert, Kogan (2007)) .

51




Example: SO(R,2) ~ R2 — {(0,0)}:

y A
Action: ON=p@)z | 4 -~
X = cos(¢p)x —sin(d)y,
Y = sin(¢)x + cos(¢)y.

Cross-section:

N\

K={(z,y)|lx =0,y >0}

1. Equations: cos(¢)x —sin(¢p)y = 0, Y =sin(¢)x + cos(¢p)y > O.

2. Solution: cos ¢ = ——2 sing = —-2

3. Substitution:
o iNOY = r = \/:132 -+ y2 - invariant function;

o iNtodX = w1 = ———(ydz — zdy)
/22442

17 (zdx + ydy)
(22442

e iNtOdY = wyp =

52



SE(2,R) = SO(2,R) x R? ~ on plane curves:

X =cos(¢p)xr —sin(¢)y +a, Y =sin(¢)xr + cos(¢)y + b

sin(¢) + cos(d)ya Voo — Yo
cos(¢) —sin(P)yz’  ~ (cos(¢) — sin(¢)y.)3

(cos(¢)—sin(¢)yz) :mcx‘|‘35|n(¢) Tz
Yxxx = (COS(qb)y Sfé(qﬁ)yas)5 ’

X:

cross-section: K = {z =0, y =0, y, = 0}

U

solve X =0,Y =0, Yy = 0: fora, b, ¢ = moving frame:

. X r —
sing = ———2* o= LYY g YTy

Ju24+1 V2 +1 V2 +1

COS ¢ =

1
Vo241

93



Substitute: cos ¢ = \/7 sing = —

Yxx = Yr 3
(cos(¢) —sin(¢)yz)

Yxxx

Yxxxx

dX = cos(¢)dx — sin(o)dy

into
\/y;?;—l—l
- Yxax
2= = gy

—_ —_ yxwx(1+y£) 3yggy£$
— I3 — KRg — (1+y )5/2

— I4:/‘685+3/‘63

_ dx—l—y;cdy _ 2
= w = =4/1 dx

where 0 = dy — y, dx.
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computation

Recursive and inductive variations of a moving frame construction.

(Kogan 2000, 2003)

e Recursive: | | |
— does not require freeness, but requires a slice - a cross-section

with a constant isotropy group;
— on a jet bundle allows to construct moving frames and invariants

order-by-order.

e Inductive:
— requires splitting of the group into a product of two subgoups G =

A B s.t. AN B is discrete;
— invariants and moving frames for A (or B) can be used to construct

invariants and a moving frame for G.

Y
Relations among the invariants of G and its subgroups.
55




Ex.: from the Euclidean to the affine action on the planar curves.

SA(2,R) = SL(2,R) x R2 = B - A, where A = SE(2,R) and

={(31)

Notation: y1 = vz, ¥y = Yzz, - - -
K= {z€ J%z=0,y=0,y; = 0} is stable under the B-action.

Kp={z € K4lyp =0,y3 = 1} C K4 is a cross-section to the
SA(2,R)-action on the jets of curves.

U
a moving frame for B on ICj‘;1
U
3y _ 5.2
M:m(mss+3m ) 35 dor = 11/3ds, d _ 1 4d
x8/3 do  k1/3ds

o6



Example: from the affine to the projective action on the planar
curves.

ab
a
c

PGL(3,R) =B-A,where A= SL(2,R)and B =

S O
2O O

under the B-action.

Kp={z¢€Kylys =0,y5 = 1,y = 0} C K4 is a cross-section to the
PGL(3,R)-action on the jets of curves.

J
moving frame for B on K 4
J
_ —Tu2 +6 —3pup _1/3 d 1 d
n = Koo 6/~L048,L/ngoza ,ulua’ dQ — ,UQ/ dOé, d_g = 173da
376" 276"
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computation

Algebraic formulation of the moving frame method.

(Hubert, Kogan 2007)

e applicable to rational actions of algebraic groups

e replaces non-constructive step of solving for group parameters with
constructive elimination algorithms

e produces a generating set of rational invariants

e produces a set of algebraic invariants with replacement property,
(corresponds to invariantization of coordinate functions in the smooth
construction).
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Ideals and varieties

Let V' be an affine variety, then K[V'] denotes the ring of regular functions on Vand K(V")
denotes the field of rational functions on V. For U C V, U denotes Zariski closure of U.

An alg. group G acts rationally on a variety Z over a field K, charK = O.

e Source and target space: Z x Z,

e Graph of the action: O = {(z2,Z) CZx Z|3g€G: Z =g -2} <
ideal: O C K[Z x Z] extension: |O¢ C K(Z)[Z]

o Orbit: O, ={Z € Z|3g€ G : Z =gz}~ ideal: O C K[Z]

e Cross-section of degree d: an irreducible variety  C Z s.t. O, N K
consists of d simple points Vz in a dense subset of Z (iransversality
cond.)

Cross-section ideal: K is prime, s.t. codimK = maxzdim Oz =
s and |[I¢*=0¢°4+ K Cc K(Z)[Z]| is radical zero-dimensional
(transversality cond.)
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e Graph-section: Z = {(z,Z) C ZxK|3g € G : Z = g -z}« ideal:
I =0+ K CK[Z x Z]

Theorem: Coeff. of a reduced Grobner basis of either O¢ or I¢ generate
K(2)9.

Previous work. Rosenlicht (1956): V subset set of K(Z)Y that separates orbits
generates K(2)Y; coeffs. of Chow form of O¢ have this property.

Popov, Vinberg (1989): if coeff. of a generating set of O¢ are in K(2)Y, then
they generate K(Z)Y; 3 such generating set.

Beth, Miiller-Quade (1999): rewriting algorithm for linear actions.

Hubert, Kogan (2007) contribution: simple algorithm to compute rational and
replacement invariants; dim I¢ = 0 = computational advantage; rewriting

algorithms.
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Example: SO(2,R) ~ R2.
group: G = (A2 + 235 —1) C R[A1,A2], (A1 = Cosg¢,Ax = sin¢)
action: J = A + G, where
A= (21— M21—A2z2,  Zo—Axz1 + A122)
graph: O = J MRz, Z] = (22 + 23 — 2 — 23).

0¢ = <Z§ + 23 — (224 23)) C R(2)[Z2].
cross-section: K = (Z7)
I¢=0°4+ K = (21,23 — (22 + 23))

R(2)¢ = R(Z% —+ z%)

R(Z)C zeros £(F) = (fgi),{féi)) = (O,i\/z% + 23) of I¢ are
o var 0y 2 _ [ 4 [(0)]°
placement invariants. (e.g. 27 + 25 = |§; + &5 ).
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Replacement invariants

= (O¢+ K) C R(z)[Z] radical, zero-dimensional.

Theorem:
e coefficients of a reduced Grdébner Q basis of I¢ generate R(2)C.
o I =T1°NR(2)C[Z] =< Q > is prime

e if c.-s. K intersects generic orbit at d points then IC has d zeros of
n-tuples ¢ = (¢{V,... &{), i = 1.4, ) e K(2)8.

e Each ¢(¥) has replacement progerty F(z1,...,2n) € R(2)¢ =
F(z1,...,2n) —F(£
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Example: SE>(R) ~ R* (second jet bundle of plane curves).

e the group and the action J = G 4 A, where:
G=(A{+235-1) CR[A1,A2,A3, M), (A1 = COS ¢, Ap = sin ¢)

( 21— A1z1 — X220 + A3,  Zo — Aoz1 + A120 + Ag, )
A —

A A
2 2+ A123 Za Z4

AL — Aozo) (A1 — A2z0)3

e graph: O = <(1 + 23)323 - (1 + Z§)3z§> = (G+ A)NR][z, Z].

o= (72— __z2_ %\ Rl
P+ (1+22)°

e cross-section: K = (41, Z», Z3)
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e 2 ZAQL
3

2
ring of rational invariants: R(2)¢ = R ((H—z )3>

2 replacement invariants: ¢ = (&) B P £y =

0,0,0,x Z4
( <1+z§>3/2>

g(i)
(1+¢ (i))w

Replacement illustration: z —
P (1+:3)%?
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THANK YOU!
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