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Integrability theorems for PDEs: – theorems about local existence
and the “size” of the solution set for an overdetermined system of PDEs. The
“size” of the solution set is the number of arbitrary functions and constants
the general solution depends on. Equivalently, it is the type of data that can be
prescribed to guarantee the uniqueness of the solution.

• Cartan-Kähler theorem – the most general and powerful, but requires
analyticity of the equations and the data.

• Darboux [Leçons sur les systèmes orthogonaux et les coordonnées
curvilignes. (1910)] – quite specialized, but requires only C1-regularity
of the equations and the data.

• PDE version of the Frobenius integrability theorem is a particular case of
the Darboux theorem.

We formulate and prove a generalization of the Darboux theorem.
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Motivation: Geometric study of systems of hyperbolic conservation laws
Ut + F (U)x = 0.

A sub-problem (the Jacobian Problem):

Given a local frame R = {r1, . . . , rn} on Ω ⊂ Rn, find all maps F : Ω → Rn

such that R is the set of eigenvectors of the Jacobian matrix DF .

This, in turn, leads to a PDE system of the type:

ri(uα)
∣∣∣
x

= fαi (x, u(x)) for α ∈ {1, . . . ,m} and i ∈ Iα ⊆ {1, . . . , n}.

(uα : Rn → R, Iα may vary with α.)
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Darboux Théorème III

Chapitre I, Livre III, Leçons sur les systèmes orthogonaux et les coordonnées
curvilignes. (1910).
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Consider a system of PDEs:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

where

• x = (x1, . . . , xn) are independent variables;

• u = (u1, . . . , um) are unknown functions;

• Iα ⊆ {1, . . . , n} determines the set of partial derivatives ∂xiuα prescribed
by the system for the unknown function uα.

• fαi (x, u) are given C1-functions on Rn × Rm.
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Example of Darboux-type system:

• system:
ux = f(x, y, u, v)

vx = φ(x, y, u, v)

vy = ψ(x, y, u, v)

• two unknown functions u and v of (x, y).

• Iu = {1} and Iv = {1,2}.

• f, φ, ψ are given C1-functions of (x, y, u, v).
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Returning to the Darboux theorem

the system:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a point x̄ ∈ Rn by:

uα|Ξα = gα, α = 1, . . . ,m,

where

• Ξα = {x |xi = x̄i, for all i ∈ Iα}

• gα is an arbitrary C1-functions on Ξα

Under appropriate integrability conditions

has a unique local C1-solution near x̄.
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Example (data): for the system

ux = f(x, y, u, v)

vx = φ(x, y, u, v)

vy = ψ(x, y, u, v)

we prescribe data near (x̄, ȳ):

u(x̄, y) = g1(y), v(x̄, ȳ) = g2,

where g(y) is an arbitrary C1-function of one variable, g2 is a constant
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Example (integrability conditions):

ux = f(x, y, u, v)

vx = φ(x, y, u, v)

vy = ψ(x, y, u, v)

Equality of partials vxy = vyx imposes a condition on f, φ, ψ:

φy + φu uy + φv vy = ψx + ψu ux + ψv vx

⇓ substitute ux, uy, vx, and vy from the system . . .
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Example (integrability conditions):

ux = f(x, y, u, v)

vx = φ(x, y, v) φu = 0

vy = ψ(x, y, u, v)

Equality of partials vxy = vyx imposes a condition on f, φ, ψ:

φy + φu uy + φv vy = ψx + ψu ux + ψv vx

⇓ substitute ux, uy, vx, and vy from the system :

φy + φv ψ = ψx + ψu f + ψv φ
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The Darboux theorem implies that a system:

ux = f(x, y, u, v)

vx = φ(x, y, v) φu = 0

vy = ψ(x, y, u, v)

with the data

u(x̄, y) = g1(y), v(x̄, ȳ) = g2,

where g(y) is an arbitrary C1-function of one variable, g2 is a constant and
f, ψ, φ are C1-functions such that the equality

φy + φv ψ = ψx + ψu f + ψv φ

is identically satisfied in a neighborhood of a point (x̄, ȳ, g1(ȳ), g2) ∈ R2×R3,

has a unique C1-solution near (x̄, ȳ).
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The Darboux theorem (Théorème III)

A system:

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a point x̄ ∈ Rn by:

uα|Ξα = gα, α = 1, . . . ,m, where

• Ξα = {x |xi = x̄i, for all i ∈ Iα}

• gα is an arbitrary C1-function on Ξα

• fαi (x, u) are C1-functions satisfying near (x̄, g(x̄)) ∈ Rn × Rm:

∀α and ∀i, j ∈ Iα, such that i 6= j:

1. ∀β ∈ {1, . . . ,m}, if i /∈ Iβ then ∂uβf
α
j ≡ 0

2. ∂xif
α
j +

∑
β:i∈Iβ

(
∂uβf

α
j

)
f
β
i ≡ ∂xjf

α
i +

∑
β:j∈Iβ

∂uβf
α
i f

β
j

has a unique local C1-solution near x̄.
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Particular cases

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

• if, for all α, |Iα| = 1 then the system is determined.
(Darboux’s Théorème I)

• if, for all α, |Iα| = n then the system is Frobenius
(Darboux’s Théorème II)
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Outline of Darboux’s proof

∂xiuα(x) = fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

• Darboux’s Théorème I (|Iα| = 1 for all α) is proved via Picard iterations.

• Darboux’s Théorème III (|Iα| is arbitrary)

Darboux wrote out a proof only for n = 2 and n = 3:

“Pour établier cette importante proposition, sans employer un trop grand luxe de

notations, nous nous bornerons au cas de deux et de trois variables indépendantes, qui

suffira d’ailleurs pour les applications que nous avons en vue”.

– for n = 2 the proof uses Théorème I.

– for n = 3 Darboux identifies sub-systems that can be treated by
Théorème I or by n = 2 case. These sub-systems are solved in a
“right” order so that the solution of one sub-system provides initial data
to the next.

This suggests a proof by induction.
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Extending Darboux’s argument to an inductive proof for an arbitrary number of
independent variables turned out to be non-trivial:

Benfield, Jenssen, and IK, ”On two theorems of Darboux” (2017) preprint, 27 pp

http://www.math.ncsu.edu/˜iakogan/papersPDF/BJK-dar.pdf

We realized that a direct proof of a more general version of the theorem can be
given.
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Generalization of Théorème III

Our theorem generalizes Darboux’s in two ways:

(i) Instead of partial derivatives, the directional derivatives of the unknown
functions are prescribed along C1-vector fields comprising a local frame
{r1, . . . , rn} near x̄:

ri(uα)
∣∣∣
x

= fαi (x, u(x)) for each i ∈ Iα ⊆ {1, . . . , n}, .

(Iα may vary with α.)

(ii) The prescribed data gα for unknown uα may be given along an arbitrary
(n − |Iα|)-dimensional manifold through the point x̄, transversal to the
vector fields {ri | i ∈ Iα}.
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Integrability conditions are imposed:

by the requirement that the derivatives, prescribed by the system, are
consistent with the structure equations of the frame:

[ri, rj] =
n∑

k=1

ckijrk.

In other words, we substitute the derivatives rj(uα) prescribed by the system
into

ri
(
rj(uα)

)
− rj

(
ri(uα)

)
=

n∑
k=1

ckijrk(uα) (∗)

and require that:

1. No unprescribed derivatives of uα are present in (*).

2. Equality (*) holds as an identity near (x̄, g(x̄)) ∈ Rn × Rm.
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Integrability conditions in details:

ri
(
rj(uα)

)
− rj

(
ri(uα)

)
=

n∑
k=1

ckij rk(uα) (∗)

∀α and ∀i, j ∈ Iα, such that i 6= j:

1. No unprescribed derivatives of uα are present in (*):

• ∀β ∈ {1, . . . ,m}, if i /∈ Iβ then ∂uβf
α
j ≡ 0

• if k /∈ Iα then ckij ≡ 0

2. Equality (*) holds as an identity near (x̄, ū) ∈ Rn × Rm:

Dxfαj (x, u) · ri
∣∣∣
x

+
∑

β:i∈Iβ
∂uβf

α
j (x, u)fβi (x, u)

−Dxfαi (x, u) · rj
∣∣∣
x
−

∑
β:j∈Iβ

∂uβf
α
i (x, u)fβj (x, u) ≡

∑
k∈Iα

ckij(x)fαk (x, u).
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The Generalized Darboux theorem

A system:

ri(uα)
∣∣∣
x

= fαi

(
x, u(x)

)
, i ∈ Iα ⊆ {1, . . . , n},

with the data prescribed near a fixed point x̄ ∈ Rn by:

uα|Ξα = gα, α = 1, . . . ,m, where

• r1, . . . , rn is a local C1-frame near x̄,

• Ξα ⊂ Rn is an (n − |Iα|)-dimensional manifold through x̄, transversal to
{r1, . . . , rn},

• gα is an arbitrary C1-function on Ξα,

• fαi (x, u) are C1-functions, satisfying near (x̄, g(x̄)) ∈ Rn × Rm,

the integrability conditions on the previous page.

has a unique local C1-solution near x̄.
A particular case, when Iα’s are the same for all α is treated in Benfield’s thesis (2016).
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Proof outline

1. Use Picard-type argument to prove existence and uniqueness of the
solution ũ of the restricted system, which

• has the same equations and data as the original system

• each equation is required to hold only for x on a certain, in general
lower dimensional, submanifold of Rn, containing x̄.

Integrability conditions are not used for this part!

2. Prove that ũ is, in fact, a solution of the original system by:
• introducing functions:

Aαi (x) = ri(ũα)|x − fαi (x, ũ(x)), 1 ≤ α ≤ m, i ∈ Iα
• using integrability conditions of the original system to show that

functions Aαi (x) satisfy a linear homogeneous system of equations of
the “restricted type” covered by part 1.
• observing that Aαi (x) ≡ 0 is a unique solution of such system.
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Thank you!
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Additional slides
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More details on the “restricted system”

1. Let W t
i (x): R× Rn → Rn denote the flow of ri:

d

dt
W t
i (x) = ri

∣∣∣
W t
i (x)

.

2. For each α, choose an increasing order on the set of indices
Iα = {i1, . . . , ip(α)} and define a map ρ from an appropriate open
neighborhood of (0, x̄) in Rp ×Ξα to a neighborhood Ω of x̄, by

ρ(t1, t2, . . . , tp, ξ) := W
tp
ip
· · ·W t2

i2
W
t1
i1
ξ.

3. By shrinking the domain of ρ, we can insure that Ξn
α = Im(ρ) is an open

neighborhood of x̄with localC1-coordinates (ξ1, . . . , ξn−p, ti1, . . . tip) and
hence

Ξk
α = {x ∈ Ξi

α | tik+1
= 0, . . . , tip = 0}

are C1-submanifolds of Rn.
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4. For the restricted system, we require that for each α = 1, . . . ,m, and each
ik ∈ Iα:

rik(uα)
∣∣∣
x

= fαik(x, u(x)) for x ∈ Ξk
α.

5. Picard-type argument implies that the fixed point ũ of a contractive map:

Φ[u]α(x) = gα(ξ) +
∫ t1

0
fαi1

(
W b
i1
ξ, u(W b

i1
ξ)
)
db

+
∫ t2

0
fαi2

(
W b
i2
W
t1
i1
ξ, u(W b

i2
W
t1
i1
ξ)
)
db

...

+
∫ tp

0
fαip

(
W b
ipW

tp−1
ip−1
· · ·W t1

i1
ξ, u(W b

ipW
tp−1
ip−1
· · ·W t1

i1
ξ)
)
db

is the unique solution of the restricted system with the data

uα|Ξα = gα.
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Applications

We encountered systems of the generalized Darboux type in our study of
hyperbolic conservative systems:

Ut + F (U)x = 0.

1. Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed
eigencurves. J. of Hyperbolic Differential Equations (JHDE) Vol. 7, No. 2.,
(2010) pp. 211– 254.

2. Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws
Communications in PDE’s, No. 37, (2012) , pp. 1096 – 1140.

At that time, we had to impose analyticity assumptions and use Cartan-Kähler
theorem.
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Conservation laws with prescribed eigencurves

Jacobian problem: Given a local frame R = {r1, . . . , rn} on Ω ⊂ Rn,
find all maps f : Ω→ Rn such thatR is the set of eigenvectors of the Jacobian
matrix Df .

This leads to the λ-system, on the eigenvalues-to-be:

ri(λ
j) = Γjji(λ

i − λj) for i, j ∈ {1, . . . , n}, i 6= j,

(λi − λk)Γkji = (λj − λk)Γkij for i, j, k ∈ {1, . . . , n},
i < j, i 6= k, j 6= k.

For n > 2 the size of the solution set depends on the properties of R.

In a case when:
Γ1

23 6= 0, but c123 = 0, Γ2
31 = 0, Γ3

21 = 0, Γ3
31 = Γ2

21,

the λ-system reduces to λ2 = λ3 and a generalized Darboux-type system:

r2(λ1) = Γ1
12 (λ2 − λ1), r1(λ2) = Γ2

21 (λ1 − λ2)

r3(λ1) = Γ1
13 (λ2 − λ1), r2(λ2) = 0

r3(λ2) = 0

25



Extensions of systems of conservation laws

Hessian problem: Given a local frame R = {r1, . . . , rn} on Ω ⊂ Rn,
find all functions η : Ω→ R, such thatR is orthogonal with respect to the inner
product defined by the Hessian matrix D2η.

This leads to the β-system, on the “lengths” of vectors ri with respect to D2η:

ri(β
j) = βj (Γjij + c

j
ij)− β

iΓijj for i 6= j,

βk ckij + βjΓjik − β
iΓijk = 0 for i < j, i 6= k, j 6= k,

For n > 2 the size of the solution set depends on the properties of R.

In a case when: c123 6= 0, but c312 = Γ3
12 = Γ3

21 ≡ 0, c213 = Γ2
13 = Γ2

31 ≡
0, and Γ2

11 = Γ3
11 ≡ 0,

the β-system reduces to β1 = 0 and a generalized Darboux-type system:

r1(β2) = β2 (Γ2
12 + c212), r1(β3) = β3 (Γ3

13 + c313),

r3(β2) = β2 (Γ2
32 + c232)− β3 Γ3

22, r2(β3) = β3 (Γ3
23 + c323)− β2 Γ2

33.
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