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Integrability theorems for PDEs: - theorems about local existence
and the “size” of the solution set for an overdetermined system of PDEs. The
“size” of the solution set is the number of arbitrary functions and constants
the general solution depends on. Equivalently, it is the type of data that can be
prescribed to guarantee the uniqueness of the solution.

e Cartan-Kahler theorem — the most general and powerful, but requires
analyticity of the equations and the data.

e Darboux [Lecons sur les systemes orthogonaux et les coordonnées
curvilignes. (1910)] — quite specialized, but requires only Cl-regularity
of the equations and the data.

e PDE version of the Frobenius integrability theorem is a particular case of
the Darboux theorem.

We formulate and prove a generalization of the Darboux theorem.



Motivation: Geometric study of systems of hyperbolic conservation laws
Ut + F(U)a: = 0.

A sub-problem (the Jacobian Problem):

Given a local frame R = {rq,...,rp} on 2 C R"™, find all maps F': 2 — R"
such that R is the set of eigenvectors of the Jacobian matrix DF'.

This, in turn, leads to a PDE system of the type:

ri(ua)‘x = f¥(x,u(x)) forae {1,...,m}andie I, C{1,...,n}.

(ua: R™ — R, I, may vary with «.)



Darboux Théoreme Il

Chapitre |, Livre lll, Lecons sur les systemes orthogonaux et les coordonnées
curvilignes. (1910).



Consider a system of PDEs:

Oz;ua(x) = ff‘(a:,u(w)), i€ly CH1,...,n},

where
e x = (x1,...,xyn) are independent variables;
e u= (uqy,...,un) are unknown functions;
o o C{1,...,n} determines the set of partial derivatives 9, u. prescribed

by the system for the unknown function .

o f%(x,u) are given Cl-functions on R x R™.



Example of Darboux-type system:

e system:
ury = f(x,y,u,v)
vy = ¢(x,y,u,v)
vy = P(x,y,u,v)

e two unknown functions u and v of (x, vy).
o [, ={1}and [, = {1,2}.

e f, ¢, are given C'l-functions of (z,y, u, v).



Returning to the Darboux theorem

the system:

Or;ua(x) = f?(m,u(w}), i€l CH{1,...

with the data prescribed near a point x € R™ by:
Ua|=, = ga, a=1,...,m,

where
o =y =A{x|x; =x;, foralli € I,}

e ¢, is an arbitrary C'1-functions on =,

Under appropriate integrability conditions

has a unique local C'1-solution near z.

,’TL},



Example (data): for the system

Uy — f(xayvuav>
Vr — qb(x,y,u,v)
Uy — ¢(377y7ua”0)

we prescribe data near (z, y):

u(z,y) = 91(y), v(Z,y) = g2,
where g(y) is an arbitrary C'1-function of one variable, g- is a constant



Example (integrability conditions):

Uy — f(xayvuav>
Vr — qb(a:,y,u,v)
Uy — ¢(37,y,ua”0)

Equality of partials vzy = vy, imposes a condition on f, ¢, ¢:

¢y+¢uuy+ ¢vvy = Yz + Yuuxr + Yy Ux

|} substitute uz, uy, vz, and vy from the system. ..



Example (integrability conditions):

Ux — f(%,g,’d,’l))
ve = ¢(z,y,v) ¢u =0
Uy — w(ajfy)u)v)

Equality of partials vzy = vy, imposes a condition on f, ¢, ¢:

¢y+¢uuy+ ¢vvy = Yz + Yuuxr + Yy vx

{} substitute uz, uy, vz, and vy from the system:

¢y‘|‘ GvY = Vg + Yo [+ Yv @
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The Darboux theorem implies that a system:

Ugr — f(xayauav)
ve = ¢(z,y,v) ¢u =0
”Uy — w(xayauav)

with the data

u(z,y) = g91(y), v(Z,y) = g2,

where ¢(y) is an arbitrary C'*-function of one variable, g- is a constant and
f, 4, ¢ are C'1-functions such that the equality

Qby‘l‘ G = Vg + Yo [+ Yv @

is identically satisfied in a neighborhood of a point (Z, 7, g1 (%), g2) € R? x R3,

has a unique C'1-solution near (Z, 7).
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The Darboux theorem (Théoréme Ill)

A system:

Ot (x) = fz-o‘(:c,u(ac)), iel, C{1,...,n},
with the data prescribed near a point x € R" by:

Ual=, = ga, a=1,...,m, where
o =y =A{x|x; =x;, foralli € Iy}
e g is an arbitrary C'1-function on =,

o f*(x,u) are C'l-functions satisfying near (z, g(z)) € R™ x R™:

Vo and Vi, j € Iy, such that ¢ # j:

1. VB e€{1,...,m},ifi & Igthen 8uﬁfj<)‘zo

2. Oy, 9 +5-Zz (8us ) £ = 8s, 82 +/3-Zz Ougf 1}
el -J<ip

has a unique local C'1-solution near z.
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Particular cases

Oz, ua(x) = ff‘(a:,u(a:)), i€l C{1,...,n},

e if, for all o, |Io| = 1 then the system is determined.
(Darboux’s Théoreme )

e if, for all o, |Io| = n then the system is Frobenius
(Darboux’s Théoreme II)
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Outline of Darboux’s proof

Or;ua(x) = ff‘(:c,u(ac)), i€l C{1,...,n},

e Darboux’s Théoreme | (|| = 1 for all ) is proved via Picard iterations.
e Darboux’s Theoreme lll (| 1] is arbitrary)

Darboux wrote out a proof only for n = 2 and n = 3:

“Pour établier cette importante proposition, sans employer un trop grand Iluxe de
notations, nous nous bornerons au cas de deux et de trois variables indépendantes, qui
suffira d’ailleurs pour les applications que nous avons en vue”,

— for n = 2 the proof uses Théoreme I.

— for n = 3 Darboux identifies sub-systems that can be treated by
Théoreme | or by n = 2 case. These sub-systems are solved in a
“right” order so that the solution of one sub-system provides initial data
to the next.

This suggests a proof by induction.
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Extending Darboux’s argument to an inductive proof for an arbitrary number of
independent variables turned out to be non-trivial:

Benfield, Jenssen, and IK, "On two theorems of Darboux” (2017) preprint, 27 pp
http://www.math.ncsu.edu/~iakogan/papersPDF/BJK-dar.pdf

We realized that a direct proof of a more general version of the theorem can be
given.
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Generalization of Theoreme llI

Our theorem generalizes Darboux’s in two ways:

() Instead of partial derivatives, the directional derivatives of the unknown
functions are prescribed along C1-vector fields comprising a local frame
{r1,...,rn} near x:

ri(ua)‘x = f®(z,u(z)) foreachie I, C {1,...,n},.

(Io may vary with «.)

(i) The prescribed data g, for unknown u, may be given along an arbitrary
(n — |I|)-dimensional manifold through the point x, transversal to the
vector fields {r; |i € I,}.
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Integrability conditions are imposed:

by the requirement that the derivatives, prescribed by the system, are
consistent with the structure equations of the frame:

mn
vl = Y iy
k=1

In other words, we substitute the derivatives r;(uq) prescribed by the system
into

(1 (ua)) — 1y (riCua)) = 3 chirg(ua) ()
k=1

and require that:
1. No unprescribed derivatives of u,, are presentin (*).

2. Equality (*) holds as an identity near (z, g(x)) € R™ x R™,
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Integrability conditions in details:

(5 (ua)) — 1y (riCua)) = 3 chirp(ua) ()
k=1

Vo and Vi, j € I, such that ¢ # j:

1. No unprescribed derivatives of u,, are presentin (*):

VB €{1,...,m},if ¢ ¢ Igthen Oug fi' =0

if k ¢ I, then cfj =

2. Equality (*) holds as an identity near (z,u) € R™ x R™:

Da?f]a(:cv U) Iy

Y O u) ()
ﬁ:’iEIﬁ

—Daff(m,u) x| = > Ougffe,w)f) (wu) = Y (@) fiz,w).

BZjEIﬁ kela
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The Generalized Darboux theorem

A system:

ri(ua))x = ff(a:,u(a:)), i €lo C{1,...,n},
with the data prescribed near a fixed point x € R™ by:

Ua|=, = ga, o =1,...,m, where
e ry,...,ryis alocal Cl-frame near z,

e =, C R"is an (n — |I,|)-dimensional manifold through z, transversal to
{r1,...,rn},

e go is an arbitrary C1-function on =,

o f*(x,u) are C'l-functions, satisfying near (z, g(z)) € R x R™,

the integrability conditions on the previous page.

has a unique local C'1-solution near z.

A particular case, when 1,,’s are the same for all « is treated in Benfield’s thesis (2016). 5




Proof outline

1. Use Picard-type argument to prove existence and uniqueness of the
solution u of the restricted system, which

e has the same equations and data as the original system

e each equation is required to hold only for x on a certain, in general
lower dimensional, submanifold of R™, containing .
Integrability conditions are not used for this part!

2. Prove that u is, in fact, a solution of the original system by:
e introducing functions:

AY(2) = ()]s — [P i), 1<a<m,i€lq

e using integrability conditions of the original system to show that
functions A$*(x) satisfy a linear homogeneous system of equations of

the “restricted type” covered by part 1.
e observing that A$*(x) = O is a unique solution of such system.
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Thank you!

21



Additional slides
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More details on the “restricted system”

1. Let Wl(x): R x R® — R™ denote the flow of r;:

d
@Wf(ﬂf) el )

Wi(z)

2. For each «, choose an increasing order on the set of indices
I = {z‘l,...,ip(a)} and define a map p from an appropriate open
neighborhood of (0, z) in RP x = to a neighborhood 2 of z, by

_ t t t
p(t17t27 s 7tp7€) = Wi;)---Wi;Willf.

3. By shrinking the domain of p, we can insure that =72 = I'm(p) is an open
neighborhood of Z with local C'1-coordinates (€1, . .., &n—p, tiy, - - - t;,) and
hence

=k ={z e = |t 0,...,t; =0}

i1 P

are C'l-submanifolds of R™.
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4. For the restricted system, we require that foreacha = 1, ..., m, and each

rik(ua)’w = fé(w,u(w)) for xz € Eg.

5. Picard-type argument implies that the fixed point @ of a contractive map:

t
Plula(a) = ga(©) + [ 15 (Whe w(Wh©) db
+/ 2 (WEWLE, u(WhW;ie)) db

tp 1 t b
+ / a p_ ' -Wz-llﬁ, u(W,

1

tp—1 t1
W'Zp_l W g))db
is the unique solution of the restricted system with the data

ua|Ea — gOé'
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Applications

We encountered systems of the generalized Darboux type in our study of
hyperbolic conservative systems:
Ut + F(U>ac = 0.

1. Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed

eigencurves. J. of Hyperbolic Differential Equations (JHDE) Vol. 7, No. 2.,
(2010) pp. 211— 254.

2. Jenssen, H. K., Kogan, . A., Extensions for systems of conservation laws
Communications in PDE’s, No. 37, (2012) , pp. 1096 — 1140.

At that time, we had to impose analyticity assumptions and use Cartan-Kahler
theorem.
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Conservation laws with prescribed eigencurves

Jacobian problem: Given a local frame R = {ry,...,rp} on Q C R",
find all maps f: €2 — R™ such that R is the set of eigenvectors of the Jacobian
maitrix D f.

This leads to the A-system, on the eigenvalues-to-be:
(M) = ML= M) forije{1,...,n}, i# 7,
(A= X = (W =20y ford, g ke {1,...,n},
i< i £k, j £ k.
For n > 2 the size of the solution set depends on the properties of R.

In a case when:
1 1 2 __ 3 _ 3 _ 2
53 7 0, but c53=0, 5, =0, N3, =0, I3;="r35,

the \-system reduces to A2 = X3 and a generalized Darboux-type system:

ro(Al) = riz (Aj - /\1), rl(Az) =13 (A= )?)
r3(AY) =Ti3 (A —ab), r2(A") =0
I'3(>\ ) =0
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Extensions of systems of conservation laws

Hessian problem: Given a local frame R = {rq,...,rp} on 2 C R",
find all functions n: €2 — R, such that ‘R is orthogonal with respect to the inner
product defined by the Hessian matrix D?n.

This leads to the 3-system, on the “Iengths” of vectors r; with respect to D?n:
m(ﬁj)—ﬁj(rj +c3)—52 for i # 7,
B cf; + 8717, ﬁzr;kzo fori < j,i %k, j # k,

For n > 2 the size of the solution set depends on the properties of R.

Ina case when: ¢33 # 0, butcj, =3, =13, =0,ci3=T$3=T3; =
0,andM$; =13, =0,

the 8-system reduces to 81 = 0 and a generalized Darboux-type system:

r1(8%) = B2 (M35 + c50), r1(83) = 83 (M35 + 33),

r3(8%) = B2 (M5, + c5o) — B335, 12(83) =B (M33+ c33) — B2 33,
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