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Statement of the Problem

Problem: Jacobians with prescribed eigenfields

Given: (i) A coordinate chart
(
Ω, u = (u1, . . . , un)

)
on Rn;

(ii) n vector-fields
Ri (u) := (R1

i (u), . . . ,Rn
i (u))T ,

i = 1, . . . , n, independent over R at each
point of Ω.

Find: a matrix-valued map A : U → Mn, where
U ⊂ Ω such that:

(i) Ri (u), i = 1, . . . , n are right eigenvectors
of A(u) ∀u ∈ U ;

(ii) A(u) is the Jacobian matrix of some map
f : U → Rn relative to u-coordinates.
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Statement of the Problem

In other words:

Given: a local frame of vector fields
Ri (u) := (R1

i (u), . . . ,Rn
i (u))T , i = 1, . . . , n on

Ω ∈ Rn

Define: R(u) := [R1(u) | · · · |Rn(u)],

L(u) := R(u)−1 =

 L1(u)
...

Ln(u)

 .
Find: n smooth real-valued functions

λ1(u), . . . , λn(u) on a neighborhood U ⊂ Ω
s.t. with Λ(u) := diag[λ1(u), . . . , λn(u)]

A(u) := R(u)Λ(u)L(u)

is the Jacobian matrix of some map
f : U → Rn relative to u-coordinates.
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Statement of the Problem

How many solutions?

How many free constants and functions determine a
general solution λ1(u), . . . , λn(u)?
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Statement of the Problem

Trivial solutions

I ∀R1(u), . . . ,Rn(u) ∃ one-parameter family of trivial
solutions λ1(u) = · · · = λn(u) ≡ λ̄, where λ̄ ∈ R:

R(u) Λ̄ L(u) = Λ̄ = Df for f = λ̄u + ū, ū ∈ Rn.

I ∃R1(u), . . . ,Rn(u) s.t. there are only trivial solutions.
Example:

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [−u2, u1, 1]T .

I λ1(u) = · · · = λn(u) is a solution

m

λ1(u) = · · · = λn(u) ≡ λ̄ for some λ̄ ∈ R.
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Statement of the Problem

Scaling invariance

λ1(u), . . . , λn(u) is a solution for vector-fields
R1(u), . . . ,Rn(u)

m

λ1(u), . . . , λn(u) is a solution for R̃i = αi (u)Ri , i = 1, . . . , n
for any smooth functions αi : Ω→ R.
Proof:

R(u)Λ(u)L(u) is a Jacobian⇔ R̃(u)Λ(u)L̃(u) is a Jacobian.

we prescribe eigenfields-to-be up to a scaling

m

we prescribe eigencurves-to-be (integral curves of eigenfields)
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Hyperbolic conservation laws

System of conservation laws

ut + f (u)x = 0 . (1)

I one space-dimension: x ∈ R; one time-dimension:
t ∈ R.

I u(x , t) ∈ Ω ⊂ Rn (n equations on n unknown state
variables).

I nonlinear flux f : Ω→ Rn.

LHS(1) = ut + Df ux

(1) is hyperbolic if ∀u ∈ Ω Jacobian Df (u) is diagonalizable
over R.
(1) is strictly hyperbolic if ∀u ∈ Ω all eigenvalues of Df (u)
are real and distinct.
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Hyperbolic conservation laws

Riemann problem

ut + f (u)x = 0 . (1)

with a step function as an initial data at t = 0:

u0(x) =

{
u− , x < 0
u+ , x > 0 .

Self-similar solutions u(x , t) = φ( x
t ) of Riemann problems,

called wave curves, exist through each strictly hyperbolic
state ū. They are locally made of two components with the
second order contact at ū:

I rarefaction states that are part of eigencurves

I shock states that are part of Hugoniot locus
{ u ∈ Ω | ∃ s ∈ R : f (u)− f (ū) = s · (u − ū) }.
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Hyperbolic conservation laws

Riemann problem

ut + f (u)x = 0 . (1)

with a step function as an initial data at t = 0:

u0(x) =

{
u− , x < 0
u+ , x > 0 .

Self-similar solutions u(x , t) = φ( x
t ) of Riemann problems,

called wave curves, exist through each strictly hyperbolic
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Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed eigencurves March 31, 2009 9 / 36



Hyperbolic
conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Statement of the
Problem

Hyperbolic
conservation laws

The λ-system

Geometric
interpretation

Rich frame
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The λ-system

Direct Formulation
I A matrix A(u) = (Ai

j(u)) is a Jacobian on subset
Ω ⊂ Rn smoothly contractible to a point.

∂Ai
j(u)

∂uk
=
∂Ai

k(u)

∂uj
for all i , j , k = 1, . . . , n with j < k ,

I A(u) = R(u)Λ(u)L(u) is a Jacobian

m

n∑
m=1

[
C i

mj∂kλ
m − C i

mk∂jλ
m + λm

(
∂kC i

mj − ∂jC
i
mk

)]
= 0 ,

i , j , k = 1, . . . , n with j < k ,

where

C i
mj(u) := R i

m(u)Lm
j (u) (no summation), ∂i =

∂

∂ui
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The λ-system

n∑
m=1

[
C i

mj∂kλ
m − C i

mk∂jλ
m + λm

(
∂kC i

mj − ∂jC
i
mk

)]
= 0 ,

i , j , k = 1, . . . , n with j < k

I A linear variable coefficient system of n2(n−1)
2 of first

order PDEs for n unknowns λ1, . . . , λn.

I For n ≥ 3 it is an overdetermined system.
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The λ-system

Formulation in terms of differential forms

A(u) is a Jacobian matrix ⇐⇒ dA(u) ∧ du = 0 ,

where du := (du1, . . . , dun)T .

A(u) = R(u)Λ(u)L(u) is a Jacobian

m

{L(dR)Λ + dΛ− ΛL(dR)} ∧ Ldu = 0 .

(LHS is an n-vector of differential two-forms)
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The λ-system

Rewriting in terms of the given frame:

I ri (u) :=
∑n

m=1 Rm
i (u) ∂∂um is given frame

I `i (u) :=
∑n

m=1 Li
m(u)dum is the dual coframe.

I ` := (`1, . . . , `n)T

I µ := R−1dR = LdR matrix of one-forms

(
L(dR)Λ + dΛ− ΛL(dR)

)
∧ Ldu = 0

m(
µΛ + dΛ− Λµ

)
∧ ` = 0 .

m
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Example: Euler
system

The λ-system

Algebraic-geometric system (the λ-system)[(
µΛ + dΛ− Λµ

)
∧ `
]

(ri , rj) = 0 for 1 ≤ i < j ≤ n

m

n(n − 1) linear, homogeneous, 1st order PDEs and
n(n−1)(n−2)

2 algebraic equations.

ri (λ
j) = Γj

ji (u)(λi − λj) for i 6= j ,

(λi − λk)Γk
ji (u) = (λj − λk)Γk

ij(u) for i < j , i 6= k , j 6= k,

where Γk
ij := Lk(DRj)Ri .

n = 2 – no algebraic constraints. General solution depends
on 2 arbitrary functions of 1 variable. (see Defermos)
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system

Geometric interpretation

Structure coefficients and connection
components

I dual frame and coframe on Ω:

ri :=
n∑

m=1

Rm
i (u)

∂

∂um
, `i :=

n∑
m=1

Li
m(u)dum.

[ri , rj ] =
n∑

k=1

ck
ij rk , d`k = −

∑
i<j

ck
ij `

i ∧ `j .

I Γk
ij := Lk(DRj)Ri is the Christoffel symbols of the

connection ∇ ∂

∂ui

∂
∂uj = 0 computed relative to the frame

{r1, . . . , rn} i.e

∇ri rj =
n∑

k=1

Γk
ij rk .

I Matrix µ := LdR of connection forms with
µk

j =
∑n

i=1 Γk
ij`

i .
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Geometric interpretation

Symmetry and flatness

d` = −µ∧` (Symmetry), dµ = −µ∧µ (Flatness).

m

c i
km = Γi

km − Γi
mk (Symmetry)

and

rm
(
Γj

ki

)
− rk

(
Γj

mi

)
=

n∑
s=1

(
Γj

ksΓs
mi − Γj

msΓs
ki − cs

kmΓj
si

)
(Flatness).
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Rich frame

Rich frame

I Definition A frame r1, . . . , rn is rich if each pair of
vector-fields is in involution, i. e. ∀1 ≤ i , j ≤ n:

[ri , rj ] = c i
ij ri + c j

ij rj ⇔ ck
ij = 0 k 6= i , k 6= j .

⇓

I ∃ smooth functions αi : Ω→ R, i = 1, . . . , n such that
r̃1 := α1(u)r1, . . . , r̃n := αnrn commute.

⇓
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Riemann invariants

I ∃ a change of coordinates

(w 1(u), . . . ,wn(u)) = ρ(u)

s.t. r̃i = ∂
∂w i , i = 1, . . . , n.

⇓

I the dual coframe: ˜̀i = dw i , i = 1, . . . , n.

I Coordinates w 1(u), . . . ,wn(u) are called Riemann
invariants.
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Rich frame

Riemann invariants

I ∃ a change of coordinates

(w 1(u), . . . ,wn(u)) = ρ(u)

s.t. r̃i = ∂
∂w i , i = 1, . . . , n.

⇓

I the dual coframe: ˜̀i = dw i , i = 1, . . . , n.

I Coordinates w 1(u), . . . ,wn(u) are called Riemann
invariants.

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed eigencurves March 31, 2009 18 / 36



Hyperbolic
conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Statement of the
Problem

Hyperbolic
conservation laws

The λ-system

Geometric
interpretation

Rich frame
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Rich frame

λ-system in Riemann Invariants
(w 1(u), . . . ,w n(u)) = ρ(u)

∂iκ
j = Z j

ji (κ
i − κj) for 1 ≤ i 6= j ≤ n,

Z k
ij (κj − κi ) = 0 for 1 ≤ k 6= i < j 6= k ≤ n,

where ∂i = ∂
∂w i and

κi (w) := λi ◦ ρ−1(w) and Z k
ij (w) := Γk

ij ◦ ρ−1(w).

Z i
km = Z i

mk (Symmetry)

∂m

(
Z j

ki

)
− ∂k

(
Z j

mi

)
=

n∑
s=1

(
Z j

ksZ s
mi − Z j

msZ s
ki

)
(Flatness).
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Sévennec’s problem:

For a given quasilinear system

vt + A(v)vx = 0 ,

Sévennec shows that there is a coordinate system in which
the system is conservative if and only if there exists a flat
and symmetric affine connection ∇ such that its Christoffel
symbols and the eigenvalues of A(u) satisfy

ri (λ
j) = Γj

ji (λ
i − λj) for i 6= j ,

(λi − λk)Γk
ji = (λj − λk)Γk

ij for i < j , i 6= k , j 6= k .
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Solution strategy

ri (λ
j) = Γj

ji (λ
i − λj) for i 6= j ,

(λi − λk)Γk
ji = (λj − λk)Γk

ij for i < j , i 6= k , j 6= k .

I Express some λ’s in terms of the others from algebraic
equations.

I Substitute in differential equations.

I Use integrability theorems (Frobenius, Darboux,
Cartan-Kähler) to describe the set of solutions.

Flatness and symmetry of the connection play essential role
in checking compatibility conditions.
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Solution Solution strategy

Algebraic constraints

I n(n−1)(n−2)
2 linear equations:

(λi − λk)Γk
ji = (λj − λk)Γk

ij for i < j , i 6= k , j 6= k ,

I n − 1 variables: xk := λk − λ1 , k = 2, . . . , n.

I matrix formulation:

Nx = 0, where

I x is the (n − 1)-vector (x2, . . . , xn)T

I N is n(n−1)(n−2)
2 × (n − 1)-matrix with entries that are

either zero, ±Γk
ij , or Γk

ij − Γk
ji = ck

ij for some
i 6= j 6= k 6= i .
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system

Solution Solution strategy

Extreme cases

I rank N = n − 1 ⇒ xk = 0 , k = 2, . . . , n

⇓
only trivial solutions λ1 = · · · = λn ≡ λ̄ ∈ R.

I rank N = 0 ⇔ Γk
ij = 0 , ∀i 6= j 6= k 6= i

⇓
ck
ij = 0 , ∀i 6= j 6= k 6= i ⇔ {r1, . . . , rn} is rich.

Remarks
I only trivial solutions 6⇒ rank(N) = n − 1 .
I {r1, . . . , rn} is rich 6⇒ rank(N) = 0 .
I we will show:
{r1, . . . , rn} is rich and admits strictly hyperbolic solutions
⇒ rank(N) = 0 .
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Solution Solution strategy

Extreme cases

I rank N = n − 1 ⇒ xk = 0 , k = 2, . . . , n

⇓
only trivial solutions λ1 = · · · = λn ≡ λ̄ ∈ R.

I rank N = 0 ⇔ Γk
ij = 0 , ∀i 6= j 6= k 6= i

⇓
ck
ij = 0 , ∀i 6= j 6= k 6= i ⇔ {r1, . . . , rn} is rich.

Remarks
I only trivial solutions 6⇒ rank(N) = n − 1 .
I {r1, . . . , rn} is rich 6⇒ rank(N) = 0 .
I we will show:
{r1, . . . , rn} is rich and admits strictly hyperbolic solutions
⇒ rank(N) = 0 .

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed eigencurves March 31, 2009 23 / 36



Hyperbolic
conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Statement of the
Problem

Hyperbolic
conservation laws

The λ-system

Geometric
interpretation

Rich frame
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Solution Solution for n = 3

Algebraic equations for n = 3

Nx =

 Γ1
32 −Γ1

23

(Γ2
31 − Γ2

13) Γ2
13

Γ3
12 (Γ3

21 − Γ3
12)

[ x2

x3

]
= 0 ,

where x2 = λ2 − λ1 and x3 = λ3 − λ1.

I rank N = 2 ⇒ λ-system has only trivial solutions
λ1 = λ2 = λ3 = λ̄ ∈ R

I rank N = 0 ⇒ {r1, r2, r3} is rich. Darboux theorem
⇒ general solution depends on 3 arbitrary functions
of one variable.
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Solution Solution for n = 3

Algebraic equations for n = 3

Nx =

 Γ1
32 −Γ1

23

(Γ2
31 − Γ2

13) Γ2
13

Γ3
12 (Γ3

21 − Γ3
12)

[ x2

x3

]
= 0 ,

where x2 = λ2 − λ1 and x3 = λ3 − λ1.

I rank N = 2 ⇒ λ-system has only trivial solutions
λ1 = λ2 = λ3 = λ̄ ∈ R

I rank N = 0 ⇒ {r1, r2, r3} is rich. Darboux theorem
⇒ general solution depends on 3 arbitrary functions
of one variable.

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed eigencurves March 31, 2009 24 / 36



Hyperbolic
conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Statement of the
Problem

Hyperbolic
conservation laws

The λ-system

Geometric
interpretation

Rich frame
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Example: Euler
system

Solution Solution for n = 3

n = 3 rank N = 1

There is a unique (up to non-vanishing scalings) relation:

α1λ
1 + α2λ

2 + α3λ
3 = 0 , where α3 = −(α1 + α2)

Sub-cases: the algebraic relation involves

(i) all three λi with non-zero coefficients

(ii) only two of three λi with non-zero coefficients (after
possible permutation of indices α1 = 0) ⇒ λ2 = λ3

(no strictly hyperbolic solutions to λ-system in this
case.)
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Solution Solution for n = 3

λ-system for n = 3 rank N = 1 sub-case (i)

I (after possible permutation of indices) c1
32 6= 0, Γ1

32 6= 0,
Γ1

23 6= 0 and

λ1 =
1

c1
32

(Γ1
32λ

2 − Γ1
23λ

3) ,

I Substitution in 6 PDE’s of the λ-system produces
Frobenius system

ri (λ
s) = φs

i (u)(λ2 − λ3) for s = 2, 3 and i = 1, 2, 3,

where φs
i are known functions of Γ(u)’s.
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Example: Euler
system

Solution Solution for n = 3

λ-system for n = 3 rank N = 1 sub-case (i)

Compatibility conditions arise by substituting directional
derivatives of ri (λ

s)’s given by PDE’s into

[ri , rj ]λ
s =

3∑
k=1

ck
ij rkλ

s , s = 2, 3; 1 ≤ i < j ≤ 3.

I If they hold identically then the general solution depends
on two arbitrary constants λ̄2, λ̄3 ∈ R, s.t. for ū ∈ Ω:

λ2(ū) = λ̄2 and λ3(ū) = λ̄3.

I Otherwise, there are only trivial solutions:

λ1(u) = λ2(u) = λ3(u) ≡ λ̄ ∈ R.
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Solution Solution for n = 3

λ-system for n = 3 rank N = 1 sub-case (ii)

I algebraic equations ⇒ λ2(u) = λ3(u) =: h(u) (up
to permutation of indices).

I substitution into 6 PDE’s
ri (λ

j) = Γj
ji (λ

i − λj) , 1 ≤ i 6= j ≤ 3 produces:

r1(h) = Γ2
21(λ1 − h), r2(h) = 0,

r1(h) = Γ3
31(λ1 − h), r3(h) = 0,

r2(λ1) = Γ1
12(h − λ1),

r3(λ1) = Γ1
13(h − λ1).

I If Γ2
21 6= Γ3

31, then
λ1 = h ⇒ λ1(u) = λ2(u) = λ3(u) = λ̄ ∈ R.

I If Γ2
21 = Γ3

31 Cartan-Kähler Thm ⇒ general solution
depends on one constant (value of h at ū ∈ Ω) and one
function of one variable (values of λ1 along a curve)
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function of one variable (values of λ1 along a curve)
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Rich frame

∃ a change of coordinates u 7→ ρ(u) = (w 1(u), . . . ,wn(u))
s.t. λ-system becomes

∂iκ
j = Z j

ji (κ
i − κj) for 1 ≤ i 6= j ≤ n,

Z k
ij (κj − κi ) = 0 for 1 ≤ k 6= i < j 6= k ≤ n,

where ∂i = ∂
∂w i and

κi (w) := λi ◦ ρ−1(w) and Z k
ij (w) := Γk

ij ◦ ρ−1(w).

I ∀ distinct i , j , k : Z k
ij = 0 ⇒ no algebraic constraints

I ∃ distinct i , j , k s.t. Z k
ij 6= 0 ⇒ multiplicity

conditions on eigenvalues are implied by the system.
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Solution Solution for rich frames ∀n

Rich frame. No algebraic constraints.

∂iκ
j = Z j

ji (κ
i − κj) for 1 ≤ i 6= j ≤ n, ∂i :=

∂

∂wi
.

I Compatibility conditions ∂k∂mκ
j = ∂m∂kκ

j , where the
first derivatives ∂iκ

j , i = 1, . . . , n are given by the
equations, are met due to the flatness of the connection.

I Darboux theorem ⇒ general solution depends on n
functions of one variable φi (w i ), i = 1, . . . , n s.t. for
w̄ ∈ Ω

κi (w̄ 1, . . . , w̄ i−1,w i , w̄ i+1, . . . , w̄n) = φi (w i ).

I all n = 2 frames belong to this case.

I rich orthogonal frames belong to this case.
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Solution Solution for rich frames ∀n

Rich system with non-trivial algebraic constraints

∂iκ
j = Z j

ji (κ
i − κj) for 1 ≤ i 6= j ≤ n, ∂i :=

∂

∂wi
.

Z k
ij (κj − κi ) = 0 for 1 ≤ k 6= i < j 6= k ≤ n.

I ∃ distinct i , j , k s.t. Z k
ij 6= 0

I multiplicity conditions on eigenvalues are implied by the
algebro-differential system (no strictly hyperbolic
conservation laws in this case).

I Darboux theorem ⇒ general solution depends on
s0 constants and s1 functions of one variable, where

I s0 is the number of distinct eigenvalues of multiplicity
> 1,

I s1 is the number of eigenvalues of multiplicity 1.
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Solution Solution for rich frames ∀n

Rich system with non-trivial algebraic constraints

∂iκ
j = Z j

ji (κ
i − κj) for 1 ≤ i 6= j ≤ n, ∂i :=

∂

∂wi
.

Z k
ij (κj − κi ) = 0 for 1 ≤ k 6= i < j 6= k ≤ n.

I ∃ distinct i , j , k s.t. Z k
ij 6= 0

I multiplicity conditions on eigenvalues are implied by the
algebro-differential system (no strictly hyperbolic
conservation laws in this case).

I Darboux theorem ⇒ general solution depends on
s0 constants and s1 functions of one variable, where

I s0 is the number of distinct eigenvalues of multiplicity
> 1,

I s1 is the number of eigenvalues of multiplicity 1.

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed eigencurves March 31, 2009 31 / 36



Hyperbolic
conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Statement of the
Problem

Hyperbolic
conservation laws

The λ-system

Geometric
interpretation

Rich frame
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Example: Euler system

The Euler system for 1-dim. compressible flow

I Euler system in thermodynamic variables

vt − ux = 0

ut + px = 0

St = 0 .

v = 1
ρ is volume per unit mass, u is velocity, S is

entropy per unit mass, p(v ,S) > 0 is pressure as a
given function of v and S , s.t pv < 0.

I Ut + f (U)x = 0 ,where U = (v , u,S) and
f (U) = (−u, p(v , S), 0).

I eigenvalues of Df are
λ1 = −

√
−pv , λ2 ≡ 0 , λ3 =

√
−pv .

I eigenvectors of DF are R1 = [ 1,
√
−pv , 0 ]T ,

R2 = [−pS , 0, pv ]T , R3 = [ 1, −
√
−pv , 0 ]T
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Example: Euler system

Inverse Problem

I For a given pressure function p = p(v ,S) > 0, with

pv < 0, and vector fields R1 = [ 1,
√
−pv , 0 ]T ,

R2 = [−pS , 0, pv ]T , R3 = [ 1, −
√
−pv , 0 ]T

determine the class of conservative systems with these
as eigenfields by solving the λ-system for λ1, λ2, λ3.

I Observation: frame is rich ⇔
(pS

pv

)
v
≡ 0
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λ-system:

I differential equations

r1(λ2) = 0

r1(λ3) = pvv

4pv
(λ3 − λ1)

r2(λ1) = pv

2

(pS
pv

)
v

(λ1 − λ2)

r2(λ3) = pv

2

(pS
pv

)
v

(λ3 − λ2)

r3(λ1) = pvv

4pv
(λ1 − λ3)

r3(λ2) = 0 .

I one independent algebraic equation:

pv

4

(pS
pv

)
v

(λ1 + λ3 − 2λ2) = 0.

I Rich frame ⇔
(pS

pv

)
v
≡ 0 ⇔ no algebraic

constraints.
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Solution in the non-rich case:

I this is n = 3 case with one algebraic constraint
λ1 + λ3 = 2λ2 that involves all three λ’s ⇒ the
general solution depends on two constants.

I from the differential part of λ-system we obtain:

λ1 = λ̄−C
√
−pv , λ2 ≡ λ̄ , λ3 = λ̄+ C

√
−pv .
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Sévennec’s
problem

Solution

Solution strategy

Solution for n = 3

Solution for rich
frames ∀n

Example: Euler
system

Example: Euler system

Solution in the rich case
(

pS

pv

)
v
≡ 0

I this is rich case with no algebraic constraints ⇒
solution depends on 3 arbitrary functions in one variable.

I
(pS

pv

)
v
≡ 0 ⇔ p(v ,S) = Π(ξ), where ξ = v + F (S).

I from the differential part of λ-system we obtain:

λ2 = λ2(S), λ1 = A(ξ, u), λ3 = B(ξ, u),

where

Aξ−
√
−Π′(ξ)Au = a (B−A) , Bξ+

√
−Π′(ξ)Bu = a (A−B)

and a = − pvv

4pv
.
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