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Statement of the Problem

Problem: Jacobians with prescribed eigenfields

Given: (i) A coordinate chart (Q, u=(ut,..., u”))

on R";

(i) n vector-fields
Ri(u) == (RH(u), ..., RMu))T,
i=1,...,n, independent over R at each
point of €.

Find: a matrix-valued map A: U/ — M, where

U C Q such that:

(i) Ri(u), i=1,...,n are right eigenvectors
of A(u) Yu € U,

(ii) A(u) is the Jacobian matrix of some map
f:U — R" relative to u-coordinates.
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Statement of the Problem

Hyperbolic

In Other WordS conservation laws
with prescribed
eigencurves

Given: a local frame of vector fields
Ri(u) := (R}u),...,R"(u))T,i=1,...,non
Q € Rn Statement of the
Problem
Define: R(u) :=[Ri(u)| -+ | Ra(u)],

L (u)

Jenssen and Kogan

[(a)

Find: n smooth real-valued functions
A(u),...,A"(u) on a neighborhood U C Q
s.t. with A(u) := diag[A\!(v), ..., \"(u)]

A(u) = R(u)N(u)L(w)

is the Jacobian matrix of some map
f .U — R" relative to u-coordinates.
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Statement of the Problem

Hyperbolic
conservation laws

How many solutions?
with prescribed

eigencurves

Jenssen and Kogan

Statement of the
Problem

How many free constants and functions determine a
general solution \!(u), ..., A\"(u)?
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Statement of the Problem

Trivial solutions

> VRi(u), ..., Ra(u) 3 one-parameter family of trivial
solutions Al(u) = --- = A"(u) = ), where \ € R:

R(u)AL(u) = A = Df for f = \u+ 1, o € R".
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Statement of the Problem

Hyperbolic

TrIVIaI SOI Utlons conservation laws

with prescribed
eigencurves

Jenssen and Kogan

> VRi(u), ..., Ra(u) 3 one-parameter family of trivial
solutions Al(u) = --- = A"(u) = ), where \ € R: Statement of the

Problem

R(u)AL(u) = A = Df for f = \u+ 1, o € R".

» 3R (u),. .., Ra(u) s.t. there are only trivial solutions.
Example:

R = [ul, u?, O]T, Ry = [—u2, ut, O]T7 Rz = [—u27 ut, 1]
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Statement of the Problem

Hyperbolic

TrIVIaI SOI Utlons conservation laws

with prescribed
eigencurves

Jenssen and Kogan

> VRi(u), ..., Ra(u) 3 one-parameter family of trivial
solutions Al(u) = --- = A"(u) = ), where \ € R: Statement of the

Problem

R(u)AL(u) = A = Df for f = \u+ 1, o € R".

» 3R (u),. .., Ra(u) s.t. there are only trivial solutions.
Example:

Ry =[u, v?, 017, Ro =[-d?, b, 0]7, Ry = [—u?, it 1]
» A(u) =--- = \"(u) is a solution

0
M(u) == \"(u) = X for some X € R.
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Statement of the Problem

- - - Hyperbolic
Scallng Inva rlance conservation laws
with prescribed
eigencurves

A (u),...,A\"(u) is a solution for vector-fields ereemmer e
Ri(u), ..., Ry(u)

Statement of the

:[I Problem

A (u),...,A"(u) is a solution for R = a/(u)R;, i=1,...,n
for any smooth functions a’: Q — R.
Proof:

R(u)A(u)L(u) is a Jacobian < R(u)A(u)L(u) is a Jacobian.
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Statement of the Problem

- - - Hyperbolic
Scallng Inva rlance conservation laws
with prescribed
eigencurves

A (u),...,A\"(u) is a solution for vector-fields ereemmer e
Ri(u), ..., Ry(u)

Statement of the

:[I Problem

A (u),...,A"(u) is a solution for R = a/(u)R;, i=1,...,n
for any smooth functions a’: Q — R.
Proof:

R(u)A(u)L(u) is a Jacobian < R(u)A(u)L(u) is a Jacobian.

we prescribe eigenfields-to-be up to a scaling

0

we prescribe eigencurves-to-be (integral curves of eigenfields)
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Hyperbolic conservation laws

Hyperbolic

System Of Conservatlon |aWS conservation laws
with prescribed
eigepncurves
Jenssen and Kogan
ur+ f(u)x =0. (1)
» one space-dimension: x € R; one time-dimension: o e
teR.
> u(x,t) € Q C R" (n equations on n unknown state
variables).

» nonlinear flux f: Q — R".
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Hyperbolic conservation laws

System of conservation laws
ur+f(u)x=0. (1)

» one space-dimension: x € R; one time-dimension:
teR.

> u(x,t) € Q C R" (n equations on n unknown state
variables).

» nonlinear flux f: Q — R".

LHS(1) = ug + Df uy

(1) is hyperbolic if Yu € Q Jacobian Df (u) is diagonalizable
over R.

(1) is strictly hyperbolic if Yu € Q all eigenvalues of Df(u)
are real and distinct.
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Hyperbolic conservation laws

Hyperbolic
conservation laws

Riemann problem
with prescribed

eigencurves

Jenssen and Kogan

ur + f(u)x =0. (1)

with a step function as an initial data at t = O:
Hyperbolic
conservation laws

uo(x) = u_, x<0
M= uy, x>0.
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Hyperbolic conservation laws

Hyperbolic

Rlema nn problem conservation laws

with prescribed
eigencurves

Ut + f(u)x — 0 . (1) Jenssen and Kogan
with a step function as an initial data at t = O:
Hyperbolic
u_ X < 0 conservation laws
uo(x) = ’
uyp, x>0.

Self-similar solutions u(x, t) = ¢(¥) of Riemann problems,
called wave curves, exist through each strictly hyperbolic
state 0. They are locally made of two components with the
second order contact at u:

> rarefaction states that are part of eigencurves

> shock states that are part of Hugoniot locus
{veQ|3IseR: f(u)—f(a)=s-(v—n0)}.
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The A-system

Direct Formulation e

with prescribed
eigencurves

> A matrix A(u) = (Aj’(u)) is a Jacobian on subset
Q C R" smoothly contractible to a point.
0A;(u) _ 9AL(u)
duk oul

Jenssen and Kogan

forall i,j,k=1,...,n with j < k,

The A-system
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The A-system

- - Hyperbolic
D | reCt Form u | at | O n conservation laws
with prescribed

eigencurves

> A matrix A(u) = (Aj’(u)) is a Jacobian on subset
Q C R" smoothly contractible to a point.

8AJ".(u) A (u)

Jenssen and Kogan

forall i,j,k=1,...,n with j < k,

duk oul
» A(u) = R(u)A\(u)L(u) is a Jacobian The A-system
)
[C' DN — ChyA™ + A" (94 Ch: — ajc;'nk)} —0,
m=1
ijok=1,....n with j <k,
where
i i m . 0
Chj(u) = R, (u)L"(u) (no summation), 0i = e
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The A-system

Hyperbolic
conservation laws
with prescribed
eigencurves

Jenssen and Kogan

n

| CgDA™ = CiiIA™ 4+ A™ (94 Chy = 0;Ch)| =0,

m=1

ijok=1,....n with j < k The Arepen

» A linear variable coefficient system of w of first
order PDEs for n unknowns A, ... A"

» For n > 3 it is an overdetermined system.
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The A-system

Formulation in terms of differential forms conservation 1aws
with prescribed
eigencurves

Jenssen and Kogan

A(u) is a Jacobian matrix = dA(u) ANdu=0,

where du := (dul, ey dUn)T. The A-system

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed March 31, 2009 12 / 36



The A-system

Formulation in terms of differential forms conservation 1aws
with prescribed
eigencurves

Jenssen and Kogan

A(u) is a Jacobian matrix = dA(u) ANdu=0,

where du := (dul, ey du”)T. The A-system

A(u) = R(u)N(u)L(u) is a Jacobian

)
{L(dR)A + d\ — AL(dR)} A Ldu = 0.

(LHS is an n-vector of differential two-forms)
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The A-system

Rewriting in terms of the given frame:

> ri(u) =", R™(u)9— is given frame

> ((u) =" _ Ll (u)du™ is the dual coframe.
> 0= (4. M7

» 1 := R 'dR = LdR matrix of one-forms

(L(dR)A + dA — AL(dR)) A Ldu =0

0

(uh+dN = Ap) AL =0.

)
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The A-system
Hyperbolic

Algebralc_geometrlc system (the )\—System) conservation laws

with prescribed
eigencurves

[(uN+ dN—Ap) A] (ri,rj) =0for1<i<j<n ensen andt Kogon

0

n(n — 1) linear, homogeneous, 1st order PDEs and
w algebraic equations.

The A-system

BV) = Fu)(N = N)  fori# ),
N =XIT() = (V= XITf)  fori<j i#kj#k

where T .= L*(DR})R; .
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The A-system
Hyperbolic

Algebralc_geometrlc system (the )\—System) conservation laws

with prescribed
eigencurves

[(uN+ dN—Ap) A] (ri,rj) =0for1<i<j<n ensen andt Kogon

0

n(n — 1) linear, homogeneous, 1st order PDEs and

The A-system

w algebraic equations.
(V) = Tu)(N = N)  fori#)
(W= Xi) = (V= X)) for i< jy ik, j # k.

where T .= L*(DR})R; .

n = 2 — no algebraic constraints. General solution depends
on 2 arbitrary functions of 1 variable. (see Defermos)

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed March 31, 2009



Geometric interpretation

Structure coefficients and connection conservation 1aws
with prescribed
eigencurves

components

» dual frame and coframe on €:

n ) . no
= Z R,-’"(u)a?, = mz::l L (u)du™.

m=1

Jenssen and Kogan

n
[’77'?/] - E C,:l](' Ik, E C gl /\EJ lGeometricl
Interpretation
k=1

i<j
> I = L*(DR)R;i is the Christoffel symbols of the

connect|on Vo 67/ = 0 computed relative to the frame
oul

{rn,...,m}ie
Zrurk

» Matrix p := LdR of connection forms with
le'( = 27:1 r,l'(jel :

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed
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Geometric interpretation

Symmetry and flatness consemation s
with prescribed
eigencurves

Jenssen and Kogan

dl = —unt (Symmetry), du = —pNp (Flatness).

Geometric

interpretation

=T =T (Symmetry)
and
. ' n ) . .
(F) () = 3 (Pl — Pl — i) (Flatness)
s=1
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Rich frame

- Hyperbolic
R | Ch fra m e conservation laws
with prescribed
eigencurves

Jenssen and Kogan

» Definition A frame ry, ..., r, is rich if each pair of
vector-fields is in involution, i. e. V1 </, j < n:

[rol=cin+din o cf=0 k#i k#].

Rich frame
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Rich frame

- Hyperbolic
R | Ch fra m e conservation laws
with prescribed
eigencurves

Jenssen and Kogan

» Definition A frame ry, ..., r, is rich if each pair of
vector-fields is in involution, i. e. V1 </, j < n:

[rol=cin+din o cf=0 k#i k#].

Rich frame

4

» 3 smooth functions o/: Q — R, i =1,...,n such that
A= al(u)r,...,F, := a"r, commute.

4
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Rich frame

Riemann invariants

» 1 a change of coordinates
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Rich frame

- - - Hyperbolic
R | e m a nn. nVa ri a ntS conservation laws
with prescribed
eigencurves

Jenssen and Kogan

» 1 a change of coordinates

Rich frame

» the dual coframe: ' =dw', i=1,...,n.
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Rich frame

- - - Hyperbolic
R | e m a nn. nVa ri a ntS conservation laws
with prescribed
eigencurves

Jenssen and Kogan

» 1 a change of coordinates

Rich frame

» the dual coframe: ¢' =dw', i=1,...,n.
» Coordinates wl(u),..., w"(u) are called Riemann
invariants.
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Rich frame

A-system in Riemann Invariants

(wi(u), ..., w"(u)) = p(u)
Bimj:Zj;-(/ﬁ"—mj) for 1<i#j<n,
Zi(W — k) =0 for 1<k#i<j#k<n,

where 9; = -2 and

— ow'

k'(w):=XNopt(w) and Z,-jf(w) =T%0p71(w).

)
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Hyperbolic
conservation laws
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Rich frame
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Rich frame

A-system in Riemann Invariants

(wi(u), ..., w"(u)) = p(u)
(9,-/<;j:Zj;-(/<;"—/£j) for 1<i#j<n,
Zi(W — k) =0 for 1<k#i<j#k<n,

where 9; = -2 and

— ow'

k'(w):=XNopt(w) and Z,-jf(w) = F,’-‘j opt(w).

Hyperbolic
conservation laws
with prescribed
eigencurves

Jenssen and Kogan

Rich frame

i i
ka_ka

(Symmetry)

n

Om(Z) — 0u(Zhy) = (2,25 — 20, Z5)  (Flatness).

s=1
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Sévennec's problem

Hyperbolic

Séven neC,S problem conservation laws

with prescribed
eigencurves

Jenssen and Kogan

For a given quasilinear system
ve + A(v)vy =0,

Sévennec shows that there is a coordinate system in which
the system is conservative if and only if there exists a flat

and symmetric affine connection V such that its Christoffel
symbols and the eigenvalues of A(u) satisfy Sévennec’s

problem
n(¥) = TN =XN)  fori#],
i ykyrk i \k\[k . -
A =X = (¥ =X9)r; fori <j,i#k,j+# k.
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Solution Solution strategy

- Hyperbolic
SOl Utlon St ra tegy conservation laws
with prescribed
eigencurves

Jenssen and Kogan

n(¥) = M\ =XN)  fori#],
i ky\rk _ j k\rk : co. :
(AN =X = (VW =A)r5 fori <j,i+#k,j+#k.

> Express some A's in terms of the others from algebraic
equations.
> Substitute in differential equations.

» Use integrability theorems (Frobenius, Darboux,
Cartan-Kahler) to describe the set of solutions.

Solution strategy
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Solution Solution strategy

- Hyperbolic
SOl Utlon St ra tegy conservation laws
with prescribed
eigencurves

Jenssen and Kogan

n(¥) = M\ =XN)  fori#],
i ky\rk _ j k\rk : co. :
(AN =X = (VW =A)r5 fori <j,i+#k,j+#k.

> Express some A's in terms of the others from algebraic
equations.
> Substitute in differential equations.
» Use integrability theorems (Frobenius, Darboux,
Cartan-Kahler) to describe the set of solutions.
Flatness and symmetry of the connection play essential role
in checking compatibility conditions.

Solution strategy
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Solution Solution strategy

- - Hyperbolic
A | ge bra IC CO n St ra | ntS conse\{'sation laws
with prescribed
eigencurves

-1 -2 . . enssen and Kogan
> w linear equations: e

N =X =N = XArE fori<j,i#k, j#k,

Solution strategy
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Solution Solution strategy

- - Hyperbolic
A | ge bra IC CO n St ra | ntS conse\{'sation laws
with prescribed
eigencurves

Jenssen and Kogan

> W linear equations:

N =X =N = XArE fori<j,i#k, j#k,

» n— 1 variables: x¥ := Ak — A\l k=2,....n.

Solution strategy
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Solution Solution strategy

Algebraic constraints Hyperbolic

conservation laws
with prescribed
eigencurves

-1 -2 . . enssen and Kogan
> w linear equations: J e

N =X =N = XArE fori<j,i#k, j#k,

» n— 1 variables: x¥ := Ak — A\l k=2,.

» matrix formulation:

Nx = 0, where

Solution strategy
> x is the (n — 1)-vector (x2,...,x")7
» Nis % x (n — 1)-matrix with entries that are
either zero, +%, or Ff-j‘- — ij,- = c,f- for some

ikt
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Solution Solution strategy

Extreme cases Hyperbolic

conservation laws
with prescribed

> rank N=n-1 = Xk — O7 k=2 . eigencurves
¢

only trivial solutions A\ =-.- = X" =X e R.

sen and Kogan

Solution strategy
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Solution Solution strategy

Extreme cases Hyperbolic

conservation laws
with prescribed

> rank N=n-1 = Xk — O7 k=2 . eigencurves
¢

only trivial solutions A\ =-.- = X" =X e R.

sen and Kogan

Solution strategy
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Solution Solution strategy

Hyperbolic
EXtreme Cases conservation laws
with prescribed

| rankN =n—1 = Xk — O7 k = 27'.'7,1 eigencurves

Jenssen and Kogan

4

only trivial solutions \! =--- = A" =X e R.

> rankN=0 & TE=0,Vi#j#k#i

U
c5:07Vi¢j¢k¢i < {n,...,r} isrich.

Solution strategy
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Solution Solution strategy

Extreme cases

> rankN=n—-1 = xk=0, k=2,.

4

only trivial solutions \! =--- = A" =X e R.

> rankN=0 & TE=0,Vi#j#k#i

¢

c5:07Vi¢j¢k¢i < {n,...,r} isrich.
Remarks

> only trivial solutions % rank(N)=n—1.

» {rn,...,r} isrich % rank(N)=0.

» we will show:

{I’l,..
= rank(N) =0.

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed

., ra} is rich and admits strictly hyperbolic solutions

Hyperbolic
conservation laws
with prescribed
eigencurves

Jenssen and Kogan

Solution strategy
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Solution Solution for n = 3

Algebraic equations for n = 3 consemation s
with prescribed
eigencurves

Jenssen and Kogan

) r%z ) —253 %2
Nx = (F31 ; r13) 3 M3 3 [ 3 }
P (r21 - r12)

where x2 = )\2 — X\l and x3 = \3 — \1,

Solution for n = 3
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Solution Solution for n = 3

Algebraic equations for n = 3 consemation s
with prescribed
eigencurves

Jenssen and Kogan

) M ) _253 X2
Nx = | (5 ; M13) 3 s 3 [ 3 }
Mo (M1 — T32)
where x> = X% — M and x3 = A3 — \L.
» rank N =2 = A-system has only trivial solutions
M=X=X=)cR

Solution for n = 3
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Solution Solution for n = 3

Hyperbolic

Algebralc equatlons for n = 3 conservation laws

with prescribed
eigencurves

Jenssen and Kogan

Nx = (r§1 ; F%3) 3 F§3 5
Mo (M — 1
where x2 = X% — Al and x3 = A3 — \L.
» rank N =2 = A-system has only trivial solutions
M=X=X=)cR
» rankN=0 = {n,m,r} isrich. Darboux theorem
=-  general solution depends on 3 arbitrary functions Solution for n = 3
of one variable.

F%Z - r%3 |: X2 :|
)
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Solution Solution for n = 3

n — 3 rank N — 1 COI‘I'S"eyI's:;?OOnH(I:HWS

with prescribed
eigencurves

Jenssen and Kogan

There is a unique (up to non-vanishing scalings) relation:
a1 A + as)? + a3zX3 = 0, where a3 = —(a1 + a2)

Sub-cases: the algebraic relation involves
(i) all three A" with non-zero coefficients
(ii) only two of three A" with non-zero coefficients (after
possible permutation of indices a; =0) = A2 =)\3

(no strictly hyperbolic solutions to A-system in this I
case.)
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Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (i) contervation v
with prescribed
eigencurves

Jenssen and Kogan

» (after possible permutation of indices) c312 #0, |'§2 #0,
M, # 0 and

1
A= (M5 —T307),
32
» Substitution in 6 PDE's of the \-system produces

Frobenius system

ri(A%) = ¢5(u)(N2 — \3) fors=2,3and i=1,2,3,

Solution for n = 3

where ¢? are known functions of ['(u)'s.
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Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (i) contervation v
with prescribed
eigencurves

Compatibility conditions arise by substituting directional
derivatives of r;(\°)'s given by PDE's into

Jenssen and Kogan
3
[ IA° =) cind®, s=2,3; 1<i<j<3.
k=1

» If they hold identically then the general solution depends
on two arbitrary constants A2, A3 € R, s.t. for i € Q:

M(@) = X2 and \3(7) = 3.

Solution for n = 3
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Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (i) contervation v
with prescribed
eigencurves

Compatibility conditions arise by substituting directional
derivatives of r;(\°)'s given by PDE's into

Jenssen and Kogan
3
[ IA° =) cind®, s=2,3; 1<i<j<3.
k=1

» If they hold identically then the general solution depends
on two arbitrary constants A2, A3 € R, s.t. for i € Q:

M(@) = X2 and \3(7) = 3.

» Otherwise, there are only trivial solutions:

M) = 22(u) = X3(u) = X e R.
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Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (ii) contervation v
with prescribed
> algebraic equations = A2(u) = A3(u) =: h(u) (up ceeneane
Jenssen and Kogan

to permutation of indices).

» substitution into 6 PDE's
ri(NV) = rj.,-()\" —XN), 1<i#j<3 produces:

rl(h) = F%l()\l — h), ro 0,
ri(h) = T3 (A\! = h), r3(h) = 0,

r(A!) = ,(h— A1),
rs(A) = M (h— A1),

Solution for n = 3
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Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (ii) contervation v
with prescribed
eigencurves

> algebraic equations = A2(u) = A3(u) =: h(u) (up
to permutation of indices).

» substitution into 6 PDE's
ri(NV) = rj.,-()\" —XN), 1<i#j<3 produces:

Jenssen and Kogan

rl(h) = F%l()\l — h), ro 0,
ri(h) = T3 (A\! = h), r3(h) = 0,

r(A!) = ,(h— A1),
rs(A) = M (h— A1),

> H: r%l 7é rg]_v then _ Solution for n = 3
M4 E )= () = B =dek

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed March 31, 2009 28 / 36



Solution Solution for n = 3

A-system for n =3 rank N = 1 sub-case (ii) contervation v

with prescribed

> algebraic equations = A%(u) = A3(u) =: h(u) (up eencurves
to permutation of indices). jenssen and fogan
» substitution into 6 PDE's
ri(NV) = rj.,-()\" —XN), 1<i#j<3 produces:

rl(h) = F%l()\l — h), ro 0,
ri(h) = T3 (A\! = h), r3(h) = 0,

r(A!) = ,(h— A1),
rs(A) = M (h— A1),

> If I‘%l #* Fgl, then Solution for n = 3
M=h = Au)=X0w)=\w)=)eR

> If l‘%l = r%l Cartan-Kahler Thm = general solution
depends on one constant (value of h at & € Q) and one
function of one variable (values of A\! along a curve)
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Solution Solution for rich frames Vn

Rich frame

Hyperbolic
conservation laws
with prescribed
eigencurves

Jenssen and Kogan

3 a change of coordinates u — p(u)
s.t. A-system becomes

I
—~
2
—
—~
<
~
2
S
—~
<
~
~

aiﬁj:Zj}(/ﬁ"—nj) for 1<i#j<n,
Zijf(nj—ﬁi)zo for 1<k#i<j#k<n,

where 0; = B?vi and
k'(w):= X op~t(w) and Z,-j?(w) = FZ- op H(w).

> Vdistinct /,j, k: Zf =0 =

no algebraic constraints

> Jdistinct i,j,k st. Zf #0 = multiplicity Solution for ich
conditions on eigenvalues are implied by the system.
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Solution Solution for rich frames Vn

Rich frame. No algebraic constraints. contervation v
with prescribed
eigencurves

sen and Kogan

aimj:Zf;.(fi"—mj)forlgi;éjgn, 8;;:7',

Solution for rich
frames Vn
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Solution Solution for rich frames Vn

Rich frame. No algebraic constraints. contervation v
with prescribed
eigencurves

Jenssen and Kogan

. _ 7 I H H .
Oi! = Zy(k' —K) for 1 <i#j<n, 0= o

» Compatibility conditions OxOmk/ = OmOkk/, where the
first derivatives 9;x/, i = 1,..., n are given by the
equations, are met due to the flatness of the connection.

Solution for rich
frames Vn
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Solution Solution for rich frames Vn

Rich frame. No algebraic constraints. contervation v
with prescribed
eigencurves

Jenssen and Kogan

. _ 7 I H H .
Oi! = Zy(k' —K) for 1 <i#j<n, 0= o

» Compatibility conditions OxOmk/ = OmOkk/, where the
first derivatives 9jx/, i = 1,...,n are given by the
equations, are met due to the flatness of the connection.

» Darboux theorem = general solution depends on n
functions of one variable ¢/(w'), i =1,...,ns.t. for
weQ

Solution for rich

/{i(ﬁ/l’ e V_Vi_l, Wi, V_Vi+1, e V_Vn) — gbi(wi). el &
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Solution Solution for rich frames Vn

Rich frame. No algebraic constraints. contervation v
with prescribed
eigencurves

Jenssen and Kogan

. _ 7 I H H .
Oi! = Zy(k' —K) for 1 <i#j<n, 0= o

» Compatibility conditions OxOmk/ = OmOkk/, where the
first derivatives 9jx/, i = 1,...,n are given by the
equations, are met due to the flatness of the connection.

» Darboux theorem = general solution depends on n
functions of one variable ¢/(w'), i =1,...,ns.t. for
weQ

Solution for rich

/{i(ﬁ/l’ e V_Vi_l, Wi, V_Vi+1, e V_Vn) — gbi(wi). el &

» all n =2 frames belong to this case.

» rich orthogonal frames belong to this case.
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Solution Solution for rich frames Vn

Rich system with non-trivial algebraic constraints |EEE=.

with prescribed
eigencurves

Jenssen and Kogan

. 7] I H H P
Oi! = Zy(k' — /) for 1<i#j<n, 0= o

K(wd iy — .
Zi(W —£')=0 for 1< k#i<j#k<n.

> Jdistinct i,j, k st. Zff #0

Solution for rich
frames Vn
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Solution Solution for rich frames Vn

Rich system with non-trivial algebraic constraints |EEE=.
with prescribed
eigencurves

Jenssen and Kogan
d — F J ., o
Oi! = Zy(k' — ) for 1<i#j<n, 0 = o

K(wd iy — .
Zi(W —£')=0 for 1< k#i<j#k<n.

> Jdistinct i,j, k st. Zff #0

» multiplicity conditions on eigenvalues are implied by the
algebro-differential system (no strictly hyperbolic
conservation laws in this case).

Solution for rich
frames Vn
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Solution Solution for rich frames Vn

Hyperbolic

Rich system with non-trivial algebraic constraints |,

with prescribed
eigencurves

Jenssen and Kogan
d — F J ., o
Oi! = Zy(k' — ) for 1<i#j<n, 0 = o

K(wd iy — .
Zi(W —£')=0 for 1< k#i<j#k<n.

> Jdistinct i,j, k st. Zff #0

» multiplicity conditions on eigenvalues are implied by the
algebro-differential system (no strictly hyperbolic
conservation laws in this case).

» Darboux theorem = general solution depends on e
sp constants and s; functions of one variable, where frames ¥n
> sp is the number of distinct eigenvalues of multiplicity

> 1,
> s is the number of eigenvalues of multiplicity 1.
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Example: Euler system

The Euler system for 1-dim. compressible flow

> Euler system in thermodynamic variables

Ve — Uy
ur+px = 0
St =

v = % is volume per unit mass, u is velocity, S is

entropy per unit mass, p(v,S) > 0 is pressure as a
given function of v and S, s.t p, < 0.

Jenssen and Kogan (Penn and NC State) Hyperbolic conservation laws with prescribed
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Example: Euler
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Example: Euler system

The Euler system for 1-dim. compressible flow contervation v
with prescribed
eigencurves

> Euler system in thermodynamic variables

Jenssen and Kogan

Ve — Uy =
ur+px = 0
St =

v = % is volume per unit mass, u is velocity, S is

entropy per unit mass, p(v,S) > 0 is pressure as a
given function of v and S, s.t p, < 0.

» U+ f(U)x =0 ,where U= (v,u,S) and
f(U) = (—u,p(v,5),0).

Example: Euler
system
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Example: Euler system

The Euler system for 1-dim. compressible flow

> Euler system in thermodynamic variables

Ve — Uy
ur+px = 0
St =

v = % is volume per unit mass, u is velocity, S is

entropy per unit mass, p(v,S) > 0 is pressure as a
given function of v and S, s.t p, < 0.

» U+ f(U)x =0 ,where U= (v,u,S) and
f(U) = (—u,p(v,5),0).

» eigenvalues of Df are
M =—/=p,, A2 =0, A=/ p,.

» eigenvectors of Dr are Ry = [1, \/—pv, O]T,
Re=1[-ps, 0, p]", Rs=[1, —v/=pv. 0]"
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Example: Euler system

Hyperbolic
I nVe rse Problem conservation laws
with prescribed
eigencurves

Jenssen and Kogan

» For a given pressure function p = p(v,S) > 0, with
pv < 0, and vector fields Ry = [1, \/—pv, O]T,
Ro=[—ps, 0, p,]", Rs =1, —v=p., 0]"
determine the class of conservative systems with these
as eigenfields by solving the A-system for A!, A2, A3.

Example: Euler
system
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Example: Euler system

Hyperbolic

I nVe rse Problem conservation laws

with prescribed
eigencurves

Jenssen and Kogan

» For a given pressure function p = p(v,S) > 0, with
pv < 0, and vector fields Ry = [1, \/—pv, O]T,
Ro=[—ps, 0, p,]", Rs =1, —v=p., 0]"
determine the class of conservative systems with these
as eigenfields by solving the A-system for A!, A2, A3.

» Observation: frame is rich < (Z—f)v =0

Example: Euler
system
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Example:

A-system:

» differential equations

Euler system

Hyperbolic
conservation laws
with prescribed
eigencurves

Jenssen and Kogan

n(A?) = 0

n(\) = pwv()\3 )

AN = B(E),(0 - )

) = B(E),00- )

1 _ 3

(A = 22 -XN)

r3()\2) =
» one independent algebraic equation:

Iz]‘-/ ( ) ()\1 + )\3 2)\2) = 0 Example: Euler

system

» Rich frame <« (%)V =0 < no algebraic

constraints.
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Example: Euler system

Solution in the non-rich case:

» this is n = 3 case with one algebraic constraint
Al 4+ A3 = 2)2 that involves all three \'s =
general solution depends on two constants.
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Example: Euler system

Hyperbolic

SOlUtlon In the nOﬂ—rlCh Case conservation laws

with prescribed
eigencurves

Jenssen and Kogan

» this is n = 3 case with one algebraic constraint
A 4+ A3 = 2)2 that involves all three \'s = the
general solution depends on two constants.

» from the differential part of A-system we obtain:

AN =X-Cv=pv, A=, N =X+CV=py.

Example: Euler
system
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Example: Euler system

Solution in the rich case (&) =0 conseration v
1% v with prescribed
eigencurves

v

Jenssen and Kogan

> this is rich case with no algebraic constraints =
solution depends on 3 arbitrary functions in one variable.

> (B) =0 < p(v,S)=T(E), where & = v+ F(S).

pv
» from the differential part of A-system we obtain:

N =X(S), A=A u), X =B(u),
where
Ac—/—TV (A, = a(B—A), Be++/—TV(€)B, = a(A-B)

and a= —4_pl Example: Euler
Pv system
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