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Projection problem:
Given: A subset Z in R3 and a subset X in R2.

Decide: whether there exists a projection P: R3 — R? such that X = P(2)

Main focus: Z and X are rational algebraic curves.

Digression:
e Z and X are non-rational algebraic curves.

e Z and X are finite lists of points.




Motivation: Establishing a correspondence between objects in 3D and
their images, when camera parameters and position are unknown.

11 degrees of freedom:

e location of the center (3 parameters);

e position of the image plane (3 parameters);
e choice of, in general, non-orthogonal,
coordinates on the image plane (5
parameters, since the overall scale is
absorbed by the choice of the distance
between the image plane and the center).

PR3 - R?
L, — P11z + p12 22 + P13 23 + P14
p31 21 + P32 22 + P33 23 + P34’
y = P21 21 + P22 20 + P23 23 + P2a

p31 21 + P32 22 + P33 23 + P34



Approaches

Direct: Given Z C R3 and X C RZ2, set up a system of conditions on the
projection parameters and then check whether or not this system has a
solution.

e Hartley and Zisserman (2004) for finite lists of points.

e Feldmar, Ayache, and Betting (1995) for images of curves and surfaces
taken by cameras with known internal parameters (central projections
with 6 unknown parameters) under additional assumption on the image
curves.

Implicit: Establish necessary and sufficient conditions that Z and X must
satisfy in order for a projection to exist.

e Arnold, Stiller, and Sturtz (2006, 2007) for finite lists of points defined
an algebraic variety that characterizes pairs of sets related by a parallel
projection.



Our approach is in between of “direct” and “implicit” approach. We exploit
the relationship between the projection problem and equivalence problem
under group-actions to find the conditions that has to be satisfied by the object,
the image and the center of the projection:

1. We reduce the projection problem for curves to a modification of a group
equivalence problem (group-equivalence of a given planar curves to a
curve from 3-parameter family of planar curves).

2. The group-equivalence problem is solved by computing signatures, based
on a separating set of rational differential invariants.




Comparison of the “direct” and “signature” approach for
central projection

Direct approach: Given two rational maps N: R — R3 and ~v: R — RZ
parametrizing algebraic curves Z C R3 and X C RZ2, determine the truth
of the statement:

1P € R3x4 det(pzj)‘ZE%g = 0
Vs in the domain of F(s) 3t € R ~(t) = P(I(s)).

Signature approach: Given two rational maps Sy: R — R2 and Sz: R* —
R2, determine the truth of the statement:

Jc € R3
Vs in the domain of Sz(¢,s) Jt € R Sz(c,s) = Sy(t).

e Real quantifier elimination problems are known to have algorithmic
solutions of high complexity.

e In general, the less parameters to eliminate — the better (although other
factors may be important).




Remarks:

e Our approach can be used for finite lists of points (with signatures based
on a separating set of algebraic invariants)

e The projcetion problem can be considered over C and the proposed
method is easier to implement over C.

e The same method applies for projections of curves from R *1 to R” (but
an implementation are much harder) and, in principle, for projection of
higher dimensional objects.



Projective camera model

x
Y
1

- 1 [ 2
P11 P12 P13 P14 Z;
P21 P22 P23 P24 23

| P31 P32 P33 P34 | | ]

[] denotes an equivalence class of a matrix/ a vector under scalings by

non-zero constants.
R" — P z = (Zl,...

points [z1, ...

,2n) — 21, ...

, Zn, 1] = [z].

, zn, 0] € P™ are said to be at infinity

P is 3 X 4 matrix of rank 3

[P]: P3 — P2 is undefined at a point [29,29, 23, 2
2)" =(0,0,0)".

P(z1,22,23,

[217Z27Z37

9] € P3 such that

] c P3 is the camera center (the center of projection).



Types of cameras:

finite if its center is not at co < left 3 x 3 submatrix of P is non-singular
(central projections with 11 degrees of freedom);

infinite center is at oc;

affine center is at co and the preimage of the line at oo in P2 is the plane at
infinity in P3 < the last row of [P] is [0, 0, 0, 1],
(parallel projections with 8 degrees of freedom).

Standard cameras:

finite: projection centered at the origin to the plane z3 = 1:
1 0 0O
[P9):=]0 1 0 O |;
O 01 0
1 0 O O
affine: orthogonal projection to z1zo>-plane: [P3]:=| 0 1 0 O |.
O 0 01



Projection of algebraic curves

Fact: For an algebraic curve Z C R"™ there exists unique projective closure
[Z] C P™.

Definition: We say that Z C R3 projectsto X C R2if 3[P] s.t. [P][Z] = [X] ,

where [P][2] := {[P][z] | [2] € [2]}.]]
Notation: X = P(Z2)

Example: Z € R3 defined by equations <z1 = 25, 2p = z§> projects to the
curve X € R? defined by equation <y = a:2> by orthogonal projection PY, but
PS[Z] occupies only “half” of the image.

* bar denotes algebraic closure.

If P[z] = 0, then the image of [z] is undefined.
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Groups
projective: PGL(n+ 1) ={[B]|B€GL(n+ 1)}

affine: A(n) ={[B]|B € GL(n+ 1),thelastrowof Bis (0,...,0,1)}.

equi-affine: SA(n) = {[B]|B € SL(n + 1), the last row of B is
(0,...,0,1)}.

... and their actions:
PGL(n + 1) and its subgroups act

o on P by ([B], [21,. .., 2n, 20]") — [B] [21,- .., zn, z0] "

U

e on R"™ by linear fraction transformations.
11



Actions on cameras

finite cameras = the set of central projections

CP = {[P] | P is a 3 x 4 matrix whose left 3 x 3 minor is non-zero}.

affine cameras = the set of parallel projections

PP = {[P] | P is a 3 x 4 matrix of rank 3 whose last row is (0,0,0,1)}.

Proposition: | [P] — [A] [P] [B—1]|defines a transitive action

e of PGL(3) x A(3) on CP.

e Of A(2) x A(3) on PP.

12



Proof of the transitivity of PGL(3) x A(3)-action on CP

o If [P] € CP then P is 3 x 4 matrix whose left 3 x 3 submatrix is non-
singular = 4 ¢, ¢, c3 € Rs. 1.

Px4 = C1 P«1 + c2 Ps2 + c3 ps3, Where p,; is the j-th column of P.ﬁ

1 00 —
. . _ O 1 0 —o
e Define A to be the left 3 x 3 submatrix of P and B :=
O O 1 —c3
O 00 1

e Observe that [A] € PGL(3) and [B] € A(3)

) |

GNON_
orOo
= OO

eoNeoN®

o | P=APYB™ 1| where FY := (

*(—c1, —ca,_ ¢3) is the center of P.
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Proof of the transitivity of A(2) x A(3) action on PP

V[P] € PP can be represented by a rank 3 matrix:

P11 P12 P13 DPi4
P =1 p21 p2> p23 p2a
0 0 0 1

Exist 1 < i < j < 3 such that the rank of the submatrix ( Pli Plj > is 2.

P2i P2j

For 1 < k < 3, such that &k #= 7 and k # j, there exist ¢1, ¢co € R, such

that<p1k> =C <p175)—|—02
P2k P2q
P1i

Define A:= | po;
0

P1j Dis

0 1

P1j
P2

p2j D24 ) c A(2) and B € A(3) to have columns

b.i »= (1,0,0,0)",b,; := (0,1,0,0)", by := (—c1,—c2,1,0)" by = (0,0,0,1)7.

— 0 p—1
P=AP3B

, where PS = (

oNeN
oO=0
oNoN®)

— OO
N~ —
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Group equivalence of curves:

Definition: Let G C PGL(n + 1). We say that X1 C R" is G-equivalent to
Xo C R™if J[A] € G s.t.

[X2] = {[A][x]| [x] € [*1]}
Notation: X1 = A(XQ) or Xy EG Xo.

Camera decomposition implies:

(i) If Z C R3 projects to X C R? by a parallel projection, then any curve that
is A(3)-equivalent to Z projects to any curve that is A(2)-equivalent to X
by a parallel projection.

(i) If 2 c R3 projects to X C R? by a central projection then any curve in R3
that is .A(3)-equivalent to Z projects to any curve on R? that is PGL(3)-
equivalent to X by a central projection.m

*It is not true that any two images of Z by Py, P, € PP are A(2)-equivalent.

flt is not true that any two images of Z by P, P> € CP are PGL(3)-equivalent, but if P; and

P> have the same center images are PGL(3)-equivalent
15



Projection criteria for algebraic curves

(CP) A curve Z C R3 projects onto a curve X C R? by a finite projection if
and only if 3 ¢1, ¢o, c3 € R such that X is PGL(3)-equivalent to a planar

curve
F _{(21+61 22—|—02>
€1,€2,C3 —
23+ c3 23+ c3

(Z]_,ZQ,Z?,) S Z} (1)

Remark: the projection center is (—c1, —cp, —c3).

(PP) An curve Z C R3 projects onto an curve X C R? by an affine
projection if and only if there 3 ¢1, co € R and an ordered triplet (i, j, k) €
{(1,2,3), (1,3,2), (2,3,1)} such that X is A(2)-equivalent to

2Lk = {(Zz +e1z 2t e2z) | (21,22,23) € Z} (2)

Remark: this criterion can be reduced by considering non-overlaping cases.
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Group-equivalence for planar curves.

Problem: Given a rational action of G on R? and curves X; C R2 and X, C R?
decide whether there exists g € G such that X1 = g(X5).

Solution: is an algebraic adaptation of a known local solution from differential
geometry

e Find a separating set of two rational differential invariants.

e Use these invariants to define signatures Sy, C R? and Sy, C R?.

e Prove that X1 =¢ X <= Sy, = Sx,.-

17



Prolongation of an action

A rational action G on R2 prolongs to an action the jet space J” = R 12 with
coordinates (z, v, y(1), ... y(™) as follows:

For a fixed g € G let (z,y) = ¢g - (z,y), then z,y are rational functions of
(z,y). Then

qg- (a:,y,y(l), . ,y(n)) = (I, v, g(l), . ,g(”)),where

i(z,y)]

(x,y))

g(l): andfor k=1,...,.n—1

SEISES

i (3w, )]

% is the total derivative, applied under assumption that y is function of x. We note the duality of
our view of variables y(¥). On one hand, they are viewed as independent coordinate functions
on J". On the other hand, operator % is applied under assumption that y is a function of x

and, therefore, y(* is also viewed as the k-th derivative of y with respect to . o



Invariants

e Let G act rationally on RYV. A rational function @ : RY — R is invariant if

P(g-w) = P(w)
for all w € R™ and g € G, such that w and g - w are in the domain of &.

e A set 7 of rational invariants is separating on a subset W c RY if W is
contained in the domain of definition of each ® € 7 and Vwi,wy, € W

d(wy) = P(wy), VP € 7T <= dg € G such that wy = g - wo.

e A function & on J" is called a differential function. [
A differential function which is invariant under prolonged action of G on R?2
Is called a differential invariant.

o LetdimG = r. Let K and T be rational differential invariants of orders
r — 1 and r, respectively. The set Z = {K,T} is called differentially
separating if { K} is separating on a Zariski open subset W"—1 c Jgr—1
and Z = { K, T} is separating on a Zariski open subset of W" C J".

*The order of @ is the maximum value of k such that ® explicitly depends on the variable y(*).
19



Signatures

Let X be a rational algebraic curve with a parameterization (z(t), y(t)).

e A restriction ®|y of a rational differential function ®(x, y, y(1), ... 3(™)
to X is obtained by substituting:

| (k—1)

where * denotes the derivative with respect to the parameter.

o Let 7 = {K,T} be differentially separating set for G-action and let X
be non-exceptional with respect to Z. The signature Sy is the standard
topology closure of the image of the rational map S|y : R — R? defined

by S|x(t) = (K|x(t), T|x()).

e Theorem. If X7 and X5 are non-exceptional with respect to Z, then
X1 gg Xy < le :SXQ-

*If X is not a vertical line and the denominator if ® is not annihilated by substitution H then
d |y is a rational function R — R, otherwise it is undefined.
20



Differentially separating sets for A(2) and PGL(3) actions.

Classical GG-curvatures and (GG-arclengths:

T N e oy
SE(2): k= (;i:Qy—T—yg;)%/Q’ ds = \/:r; +y“dt = ks = ., Kss,- -
SA(2): u= 3k (kss+3K3)—5 K2 do = r1/34 __du
- U= 9,{8/3 ; o — K Siﬂa—da,uaa,...
6paaatia—"1 ga—9 3 1/3 d
PGL(3): n =2k M6,u8p/b3 Ho B dp=,uo/ da:>77p=d—z,....
Theorem
2
o T, = {Ka = (‘2“3) Ty = %O‘Q} is a differentially separating set
of A(2) rational invariants, whose exceptional curves are lines and
parabolas.
o Ipgr = {Kp = 13, Ty :np} iIs a differentially separating set of

PGL(3) rational invariants, whose exceptional curves are lines and
conics.
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Examples of A(2)-signatures
Is a(t) = (t* 4+ t, t2) implicitly defined by —y + 22 — 2y2 ¢ 4+ y* =

A(2)-equivalent to B(s) = (s + s, s3 — 352 + 2 s%) implicitly defined by
14y 442224+ 28yx+4y2 — 1423 — 422y + 2% =07

22



e The signature S, for a(t) = (t* + ¢, t2) is a parametric curve

1 (5634 1)2 168 3 11

o m Th®=-—¢

Kal~(t) = —
ol (®) oS-

e The signature Sg for 3(s) = (s® + s, s° — 352 + 3 s%) is a parametric
curve
28 (453 +6s5°+3s5s+1)2

Ka‘ﬁ(s) — = 5 (28 + 1)3

2
, Tulp(s) = - (125> 4+18s2+9s—7).

e Isittrue that S, = Sg and hence o and 3 are A(2)-equivalent?

— Sa and Sg have the same implicit equation:

Kq (1654 75T,) — 17572 — 5607, — 448 =0.| Over C it is a
sufficient condition, but not over R.

— We can look for a real reparameterization by solving Ty |o.(t) = Ta|3(s)
for ¢ in terms of s: t = < 72/3 (25 + 1) indeed works. Yes!!!

23



Is v(t) = (¢,t* + t2) A(2)-equivalent to o and 3?

No! because its signature Sy has a different
implicit equation:

40000 — 6000 T, + 14525 K, — 1575T2 + 3780 K, T, — 448 K2 + 245 T3 = 0.

24



Algorithm for central projections.

INPUT: Parameterizations I = (zl, 20,23) € Q(s)3and v = (z, y) € Q(¢)?
of rational algebraic curves Z ¢ R3 and X C R?, such that I" x " # 0.
OUTPUT: The truth of the statement:

d[P] € CP, suchthat X = P(2).
NON-RIGOROUS OUTLINE:

1. if X is a line then Z can be projected to X" is and only if

— (zZ1tcl ZQ"‘CQ) : - -
2. € .= (Z3+C3, ke ) isa family of parametric curves.

3. if X is a conic then Z can be projected to X if and only if dc1, ¢o, c3 such
that e(s) is a conic.

4. if X is neither a line or a conic then Z can be projected to X if and only if
Jdeq, ¢o, c3 such that signature e(s) belongs to the signature of v(t).

*Equivalently, Z is not a line.
25



Differentially separating set of rational PG L (3)-invariants:

_I_

_I_

+ + |

_I_

_I_

Ao = 9y5) (D12 _ 45 4(*) 4(3) @) + 40 [y(3)]3,

729
8 (A2)8
126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) _ 25 y(4) [y(3)]2)
189 [y®]2 [y@]* (4 [y¥]? + 15y y*)
210y y®) [y (63 [y™]? [y?1? — 60y [yP17 P 4+ 32 [y)Y)
525 3y (9 [y [y1® 4+ 15 [y™W]? [y®)? [y?]2 — 60y [yP]* ) + 64 [yC

3
11200 [y<3)]8> :

2)14
L oo
8y Do (9y® [y - 36y )y [yP]? — 45 [y )7 [yP]? + 120y [yP]? yP)
504 [y(®]3 [yP]° — 504 [y(®]? [y@]3 (9y®) y® y 4 15 [y*D]2 42 — 25y [
28y (432 [y™]? [y®1? [y P]° 4+ 243 [y D17y [yP])* — 1800y y ) [y3]3 [y~
240y [y)° 4P + 540y [y ]2 [y] [yP]® 4 6600 [y D17 [yP]* 4> — 2000y
5175 [y [y®1? [y]? 4 1350 [yP]* [y?]3) — 2835 [y®)]* [y(2)]*

252 [y®]3y3) [y2]? (9y™) y*) — 136 [y¥]?) — 35840 [y*))? [y*]°

630 [y]? [y [v®] (69 [y]1? [y*])? — 160 [yP]* — 153y [y)? [y*)])
2100y [y*®]2 43 (72 [yP]* 4 63 [y V]2 [yP]? — 193y [y3]2yP)
7875 [y 1" (Bly ™12 @12 - 22y PP [y @] + 9 [y )

(18 y D [y2]* Ay — 189 [y(9]? [y(2)1°
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The restriction of Kp|y and Tp|y to a planar curve X with rational
parameterization (x(t), y(t)) is computed by substitution

Y y(k.—l)
y(l) — T 5y y(k) — . ) (5)
X T
into the formulas for invariants.
o y(l), . ,y(k) are rational functions of ¢t unless X is a vertical line.
e Invariants Kp|y and T'p|y are rational functions of ¢ unless As| y R?) 0.
t
e As|y = Oifandonlyif X is a line or a conic.

R(¢)

When the restriction of invariants to the family of curves Z. parametrized

by e(c, s) 1= (2812, 2%312) is computed the differentiation in H is

taken with respect to s.

For the values ¢, such that ¢(c, s) is not a line or a conic, specialization of
c commutes with restriction of invariants Kp| > and T’p| 5 .

27



ALGORITHM:

. B
1. if | 71 = othenif [ | = O then return TRUE else return FALSE:
Y | R(t) i | R(s)

. (z1Fc1 zo+4c 2.
2. e = (2EL, 22) € Q(ep, 2,03, 5)%
3

if Do)y o 0 then if 3(cq, ¢o, c3) € R3

234c3 = OA| S| #= OA Dgle = 0

R(s) € 1 R(s) R(s)
then return TRUE else return FALSE.

4. return the truth of the statement:

3(c1,¢0,c3) € R3

€
.

zz3+c3 = 0 A
R(s)

7= 0 ”\‘éxiﬂe 7= 0 (6)
R(s) R(s)

AVs € R

R
Kple = Kply A Tple = Tply.
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Example: central projections of the twisted cubic

Can the twisted cubic Z parametrized by
M(s) = (33, 2, S> , s €R

Twisted Cubic

. 2 .
be projected to a curve X7 parametrized by a(t) = ( t3fH : t3t+1) with an

implicit equation z> + y3 — yz = 0?

29



Since X7 is not a line or a conic its signature is defined and is parametrized
by invariants:

9261 t" —t* + ¢ ol (1) = 21 (134 1)4
50 (t3—1)8 PN 0 (13- )4

Kplys(t) = —

We need to determine if there exists ¢ such that a curve parametrized by

3 2 ) ) .
e(c1,cp,c3,8) = <SS;_FC(;1, szc(;2> is not a line or a conic and has the

same signature as X;.
This is indeed true for c=(1,0,0).

Yes!! The twisted cubic can be projected to 23 4+ y3 — yz = 0. A possible
projection is x = zfj_l = %

30



Can the twisted cubic Z parametrized by

M(s) = (33, 52, s) , s eER

Twisted Cubic

be projected to a curve X3 parametrized by G(t) = (tfl, tfl> with an

implicit equation y3 + y2 x — 22 = 07?

31



Since X5 is not a line or a conic its signature is defined and parametrized
by invariants:

250047
12300

We need to determine if there exists ¢ such that a curve parametrized by

3 2 . ) )
e(c1,c0,c3,8) = (szcgl, Ss_ﬂ_6032> is not a line or a conic and has the

same constant invariants as X>.
This is indeed true for ¢=(0,0,1).

Yes!! The twisted cubic can be projected to y>+y2 z— 22 = 0. A possible
projection is x = Z;ﬁ, y = Z;ﬁ
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Can the twisted cubic be projected to quadric X3 parameterized by
v = (t%,1)?

e Does there exists ¢ such that a curve parametrized by e(c1,¢p,c3,5) =

3 2 . o
<ssicc:31, Ssic?) is a quadric, i.e As|e = 07

oYeS!!01:CQZC3:O

Can the twisted cubic be projected to quintic X, parameterized by 6 = (¢, ¢°)?

e The signature of X, degenerates to a point:

1029
KP|’Y4(t) — 108

e Does there exists ¢ such that a curve parametrized by e¢(cq,¢p,c3,8) =

3 2
s°+c1 s°+co ) : :
( sHes stos ) is not a line or a conic and

and Tp|y,(t) =0, V.

1029
Kple(e,s) = ——

e NO!I Substitution of several values of s gives an inconsistent system on c.

and T'ple(c,s) = 0, Vs € R?

33



In the above example, although Z can be projected to each of the planar X7,
X5 and X3 none of the planar curves are PGL(3)-equivalent.

34



Parallel projection example: r(s) = (s*+1, s2, s)

projects to

1
71(t) = (t* 4+, 1%), with (5,5, k) = (1,2,3) and ¢; = 0,2 =

and to
v2(t) = (82 —t, t2 4+ ¢2) with (i,j,k) = (1,2,3) and c; = c2 =0

but not to v3(t) = (t/(l +t3), t2/(1 + t3)) . Remark: v1(¢t) and y2(t) are not
A(2)-equivalent

35



Can we use the same method to solve the projection problem
for non-rational curves? In principle, yes, but

one has to be careful when describing a family of planar curves

E :{<21-|-C1 22-|-02>
‘ 23+ c3 23+ c3

(21,22,23) € Z}

by an implicit equation. Let an irreducible algebraic curve Z C C3 be a zero
set of a prime ideal Z and

A = Z4+(z(z3+c3)—(21+c1), y(zza+c3) — (z2+c2), 6(23+c3) — 1)
C Cle, z,y, 21, 22, 23, ].

Unfortunately, in general, elimination does not commute with specialization:

We can substitute a value ¢* into A and then B* = A* N C[x, y] is an ideal of
Z.«, but if we first compute B = ANClc, z, y] and then substitute c*, we might
get a different answer.

36



Example (twisted cubic)

For Z =< 21 — 25 23, z2—z§, 2123—Z§>

5 {<Z1+Cl z2—|—62>
‘ 23+ c3 23+ c3
is defined by

0 = (—c5—ca)z®+(c5+ca)y?z+ (c1+czex)zy+
(20103—205):64—(cg—cl)y?’—l—(—30103—3c§02)y2—|—

(30%03+30102)y—c%—c%

(21,%22,23) € Z}

unless cis in the zero set of < c3 +ca, c1 — 3 >.

Then Z. is defined by y2 — z + c3y + ¢5 = 0.
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Continuous vs. discrete:

Projection problem for curves vs. projection problems for finite lists of points.

/_‘\\_’_/ Jpace Curve

N
wm
Cueve

fZ = (z1,...,2™)is adiscrete sampling of acurve Z and X = (x1,...,x™)
is a discrete sampling of X', these sets might not be in a correspondence under
a projection even when the curves Z and X" are related by a projection.

38



Projection criteria for list of points*:

(CP) Alist Z = (z1,...,z™) of m points with coordinates z* = (27, 25, 2%),
r = 1...m, projects onto a list X = (x1,...,x™) of m points in R? with
coordinates x" = (2", y") by a finite projection if and only if there exist
c1,¢p,c3 € Rand [A] € PGL(3), such that

(", y", 111 = [A] [21 + c1, 25 + ¢, 23 + 3]l forr=1...m.

(PP) Alist Z = (zl,...,2™) of m points in R3 with coordinates z' =
(27,25,25), r = 1...m, projects onto a list X = (x!,...,x™) of
m points in R? with coordinates x” = (z",y") by an affine projection
if and only if there exist c1,co € R, an ordered triplet (¢,7,k) €
{(1,2,3), (1,3,2), (2,3,1)} and [A] € A(2), such that

T
(", y", 111 = [A] [z: + c1 21, 25 + c2 2, 1] forr=1...m.

*separating sets of algebraic invariants can be used to solve group-equivalence problems for
sets of points
39



More details

e Maple Code http://www.math.ncsu.edu/~iakogan/symbolic/
projections.html

e Burdis, J. and Kogan |. “Object image correspondence for curves under
parallel and central projections”, 10 pp, accepted to the Symposium on
Computational Geometry, SoCG 2012.

e http://arxiv.org/abs/1202.1303 (implicit case needs updating)

e Burdis, J. “Object Image correspondance under projections”, 2010, Ph. D.
Thesis, NCSU.

Thank you !!!
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