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Projection problem:

Given: A subset Z in R3 and a subset X in R2.

Decide: whether there exists a projection P : R3 → R2 such that X = P (Z)

Main focus: Z and X are rational algebraic curves.

Digression:

• Z and X are non-rational algebraic curves.

• Z and X are finite lists of points.
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Motivation: Establishing a correspondence between objects in 3D and
their images, when camera parameters and position are unknown.

11 degrees of freedom:

• location of the center (3 parameters);
• position of the image plane (3 parameters);
• choice of, in general, non-orthogonal,

coordinates on the image plane (5
parameters, since the overall scale is
absorbed by the choice of the distance
between the image plane and the center).

P : R3 → R2

x =
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,

y =
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34
.
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Approaches

Direct: Given Z ⊂ R3 and X ⊂ R2, set up a system of conditions on the
projection parameters and then check whether or not this system has a
solution.

• Hartley and Zisserman (2004) for finite lists of points.

• Feldmar, Ayache, and Betting (1995) for images of curves and surfaces
taken by cameras with known internal parameters (central projections
with 6 unknown parameters) under additional assumption on the image
curves.

Implicit: Establish necessary and sufficient conditions that Z and X must
satisfy in order for a projection to exist.

• Arnold, Stiller, and Sturtz (2006, 2007) for finite lists of points defined
an algebraic variety that characterizes pairs of sets related by a parallel
projection.
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Our approach is in between of “direct” and “implicit” approach. We exploit
the relationship between the projection problem and equivalence problem
under group-actions to find the conditions that has to be satisfied by the object,
the image and the center of the projection:

1. We reduce the projection problem for curves to a modification of a group
equivalence problem (group-equivalence of a given planar curves to a
curve from 3-parameter family of planar curves).

2. The group-equivalence problem is solved by computing signatures, based
on a separating set of rational differential invariants.

5



Comparison of the ”direct” and “signature” approach for
central projection

Direct approach: Given two rational maps Γ: R → R3 and γ : R → R2,
parametrizing algebraic curves Z ⊂ R3 and X ⊂ R2, determine the truth
of the statement:

∃P ∈ R3×4 det(pij)
j=1...3
i=1...3 6= 0

∀s in the domain of Γ(s) ∃t ∈ R γ(t) = P (Γ(s)).

Signature approach: Given two rational maps SX : R → R2 and SZ : R4 →
R2, determine the truth of the statement:

∃c ∈ R3

∀s in the domain of SZ(c, s) ∃t ∈ R SZ(c, s) = SX (t).

• Real quantifier elimination problems are known to have algorithmic
solutions of high complexity.

• In general, the less parameters to eliminate – the better (although other
factors may be important).
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Remarks:

• Our approach can be used for finite lists of points (with signatures based
on a separating set of algebraic invariants)

• The projcetion problem can be considered over C and the proposed
method is easier to implement over C.

• The same method applies for projections of curves from Rn+1 to Rn (but
an implementation are much harder) and, in principle, for projection of
higher dimensional objects.
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Projective camera model
 xy

1

 =

 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



z1
z2
z3
1


• [] denotes an equivalence class of a matrix/ a vector under scalings by

non-zero constants.

• Rn ↪→ Pn: z = (z1, . . . , zn)→ [z1, . . . , zn,1] = [z].

• points [z1, . . . , zn,0] ∈ Pn are said to be at infinity

• P is 3× 4 matrix of rank 3

• [P ] : P3 → P2 is undefined at a point [z0
1, z

0
2, z

0
3, z

0
4] ∈ P3 such that

P (z0
1, z

0
2, z

0
3, z

0
4)T = (0,0,0)T .

• [z0
1, z

0
2, z

0
3, z

0
4] ∈ P3 is the camera center (the center of projection).
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Types of cameras:

finite if its center is not at ∞ ⇔ left 3 × 3 submatrix of P is non-singular
(central projections with 11 degrees of freedom);

infinite center is at∞;

affine center is at ∞ and the preimage of the line at ∞ in P2 is the plane at
infinity in P3⇔ the last row of [P ] is [0,0,0,1],
(parallel projections with 8 degrees of freedom).

Standard cameras:
finite: projection centered at the origin to the plane z3 = 1:

[P 0
C ] :=

 1 0 0 0
0 1 0 0
0 0 1 0

;

affine: orthogonal projection to z1z2-plane: [P 0
P] :=

 1 0 0 0
0 1 0 0
0 0 0 1

 .
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Projection of algebraic curves

Fact: For an algebraic curve Z ⊂ Rn there exists unique projective closure
[Z] ⊂ Pn.

Definition: We say that Z ⊂ R3 projects to X ⊂ R2 if ∃[P ] s.t. [P ][Z] = [X ],∗

where [P ][Z] := {[P ][z] | [z] ∈ [Z]}. †

Notation: X = P (Z)

Example: Z ∈ R3 defined by equations
〈
z1 = z2

3, z2 = z4
3

〉
projects to the

curve X ∈ R2 defined by equation
〈
y = x2

〉
by orthogonal projection P0

P , but
P0
P[Z] occupies only ”half” of the image.

∗ bar denotes algebraic closure.
† If P [z] = 0, then the image of [z] is undefined.
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Groups

projective: PGL(n+ 1) = {[B] |B ∈ GL(n+ 1)}

affine: A(n) = {[B] |B ∈ GL(n+ 1), the last row of B is (0, . . . ,0,1)}.

equi-affine: SA(n) = {[B] |B ∈ SL(n + 1), the last row of B is
(0, . . . ,0,1)}.

... and their actions:

PGL(n+ 1) and its subgroups act

• on Pn by ([B], [z1, . . . , zn, z0]T )→ [B] [z1, . . . , zn, z0]T .

⇓

• on Rn by linear fraction transformations.
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Actions on cameras

finite cameras = the set of central projections

CP =
{

[P ] |P is a 3× 4 matrix whose left 3× 3 minor is non-zero
}
.

affine cameras = the set of parallel projections

PP =
{

[P ] |P is a 3× 4 matrix of rank 3 whose last row is (0,0,0,1)
}
.

Proposition: [P ]→ [A] [P ] [B−1] defines a transitive action

• of PGL(3)×A(3) on CP .

• of A(2)×A(3) on PP.
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Proof of the transitivity of PGL(3)×A(3)-action on CP

• If [P ] ∈ CP then P is 3 × 4 matrix whose left 3 × 3 submatrix is non-
singular⇒ ∃ c1, c2, c3 ∈ R s. t.
p∗4 = c1 p∗1 + c2 p∗2 + c3 p∗3, where p∗j is the j-th column of P .∗

• DefineA to be the left 3×3 submatrix of P andB :=


1 0 0 −c1
0 1 0 −c2
0 0 1 −c3
0 0 0 1

 .

• Observe that [A] ∈ PGL(3) and [B] ∈ A(3)

• P = AP0
C B
−1 , where P 0

C :=

 1 0 0 0
0 1 0 0
0 0 1 0

 .

∗(−c1,−c2,− c3) is the center of P .
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Proof of the transitivity of A(2)×A(3) action on PP

• ∀[P ] ∈ PP can be represented by a rank 3 matrix:

P =

 p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1



• Exist 1 ≤ i < j ≤ 3 such that the rank of the submatrix
(
p1i p1j
p2i p2j

)
is 2.

For 1 ≤ k ≤ 3, such that k 6= i and k 6= j, there exist c1, c2 ∈ R, such

that
(
p1k
p2k

)
= c1

(
p1i
p2i

)
+ c2

(
p1j
p2j

)
.

• Define A :=

 p1i p1j p14

p2i p2j p24

0 0 1

 ∈ A(2) and B ∈ A(3) to have columns

b∗i := (1,0,0,0)T , b∗j := (0,1,0,0)T , b∗k := (−c1,−c2,1,0)T , b∗4 = (0,0,0,1)T .

• P = AP0
P B
−1 , where P 0

P :=

 1 0 0 0
0 1 0 0
0 0 0 1

 .
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Group equivalence of curves:

Definition: Let G ⊂ PGL(n + 1). We say that X1 ⊂ Rn is G-equivalent to
X2 ⊂ Rn if ∃[A] ∈ G s.t.

[X2] = {[A][x] | [x] ∈ [X1]}
Notation: X1 = A(X2) or X1

∼=G X2.

Camera decomposition implies:

(i) If Z ⊂ R3 projects to X ⊂ R2 by a parallel projection, then any curve that
isA(3)-equivalent to Z projects to any curve that isA(2)-equivalent to X
by a parallel projection.∗

(ii) If Z ⊂ R3 projects to X ⊂ R2 by a central projection then any curve in R3

that is A(3)-equivalent to Z projects to any curve on R2 that is PGL(3)-
equivalent to X by a central projection.†

∗It is not true that any two images of Z by P1, P2 ∈ PP are A(2)-equivalent.
†It is not true that any two images of Z by P1, P2 ∈ CP are PGL(3)-equivalent, but if P1 and
P2 have the same center images are PGL(3)-equivalent
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Projection criteria for algebraic curves

(CP) A curve Z ⊂ R3 projects onto a curve X ⊂ R2 by a finite projection if
and only if ∃ c1, c2, c3 ∈ R such that X is PGL(3)-equivalent to a planar
curve

Z̃c1,c2,c3 =

{(
z1 + c1
z3 + c3

,
z2 + c2
z3 + c3

) ∣∣∣∣ (z1, z2, z3) ∈ Z
}

(1)

Remark: the projection center is (−c1,−c2,−c3).

(PP) An curve Z ⊂ R3 projects onto an curve X ⊂ R2 by an affine
projection if and only if there ∃ c1, c2 ∈ R and an ordered triplet (i, j, k) ∈
{(1,2,3), (1,3,2), (2,3,1)} such that X is A(2)-equivalent to

Z̃i,j,kc1,c2
=
{(
zi + c1 zk, zj + c2 zk

) ∣∣∣∣ (z1, z2, z3) ∈ Z
}

(2)

Remark: this criterion can be reduced by considering non-overlaping cases.
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Group-equivalence for planar curves.

Problem: Given a rational action ofG on R2 and curvesX1 ⊂ R2 andX2 ⊂ R2

decide whether there exists g ∈ G such that X1 = g(X2).

Solution: is an algebraic adaptation of a known local solution from differential
geometry

• Find a separating set of two rational differential invariants.

• Use these invariants to define signatures SX1
⊂ R2 and SX2

⊂ R2.

• Prove that X1
∼=G X2 ⇐⇒ SX1

= SX2
.
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Prolongation of an action

A rational action G on R2 prolongs to an action the jet space Jn = Rn+2 with
coordinates (x, y, y(1), . . . , y(n)) as follows:

For a fixed g ∈ G let (x̄, ȳ) = g · (x, y), then x̄, ȳ are rational functions of
(x, y). Then

g · (x, y, y(1), . . . , y(n)) := (x̄, ȳ, ȳ(1), . . . , ȳ(n)),where

ȳ(1) =
d
dx

[
ȳ(x, y)

]
d
dx

[
x̄(x, y)

] and for k = 1, . . . , n− 1

ȳ(k+1) =
d
dx

[
ȳ(k)(x, y, y(1), . . . , y(k))

]
d
dx [x̄(x, y)]

.

d
dx

is the total derivative, applied under assumption that y is function of x. We note the duality of

our view of variables y(k). On one hand, they are viewed as independent coordinate functions

on Jn. On the other hand, operator d
dx

is applied under assumption that y is a function of x

and, therefore, y(k) is also viewed as the k-th derivative of y with respect to x.
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Invariants
• Let G act rationally on RN . A rational function Φ: RN → R is invariant if

Φ(g · w) = Φ(w)

for all w ∈ Rn and g ∈ G, such that w and g · w are in the domain of Φ.

• A set I of rational invariants is separating on a subset W ⊂ RN if W is
contained in the domain of definition of each Φ ∈ I and ∀w1, w2 ∈W

Φ(w1) = Φ(w2), ∀Φ ∈ I ⇐⇒ ∃g ∈ G such that w1 = g · w2.

• A function Φ on Jn is called a differential function. ∗

A differential function which is invariant under prolonged action of G on R2

is called a differential invariant.

• Let dimG = r. Let K and T be rational differential invariants of orders
r − 1 and r, respectively. The set I = {K,T} is called differentially
separating if {K} is separating on a Zariski open subset W r−1 ⊂ Jr−1

and I = {K,T} is separating on a Zariski open subset of W r ⊂ Jr.

∗The order of Φ is the maximum value of k such that Φ explicitly depends on the variable y(k).
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Signatures

Let X be a rational algebraic curve with a parameterization (x(t), y(t)).

• A restriction Φ|X of a rational differential function Φ(x, y, y(1), . . . , y(n))
to X is obtained by substituting:

y(1) =
ẏ

ẋ
, . . . , y(k) =

˙y(k−1)

ẋ
, (3)

where ˙ denotes the derivative with respect to the parameter.∗

• Let I = {K,T} be differentially separating set for G-action and let X
be non-exceptional with respect to I. The signature SX is the standard
topology closure of the image of the rational map S|X : R → R2 defined
by S|X (t) = (K|X (t) , T |X (t)).

• Theorem. If X1 and X2 are non-exceptional with respect to I, then
X1
∼=G X2 ⇐⇒ SX1

= SX2
.

∗If X is not a vertical line and the denominator if Φ is not annihilated by substitution (3), then
Φ|X is a rational function R→ R, otherwise it is undefined.
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Differentially separating sets for A(2) and PGL(3) actions.

Classical G-curvatures and G-arclengths:

SE(2): κ = ÿẋ−ẍẏ
(ẋ2+ẏ2)3/2 , ds =

√
ẋ2 + ẏ2 dt ⇒ κs = dκ

ds , κss, . . .

SA(2): µ = 3κ (κss+3κ3)−5κ2
s

9κ8/3 , dα = κ1/3ds ⇒ µα = dµ
dα, µαα, . . .

PGL(3): η = 6µαααµα−7µ2
αα−9µ2

α µ

6µ
8/3
α

, dρ = µ
1/3
α dα ⇒ ηρ = dη

dρ, . . . .

Theorem

• IA =
{
Ka = (µα)2

µ3 , Ta = µαα
3µ2

}
is a differentially separating set

of A(2) rational invariants, whose exceptional curves are lines and
parabolas.

• IPGL =
{
Kp = η3, Tp = ηρ

}
is a differentially separating set of

PGL(3) rational invariants, whose exceptional curves are lines and
conics.

21



Examples of A(2)-signatures

Is α(t) = (t4 + t, t2) implicitly defined by −y + x2 − 2 y2 x+ y4 = 0

A(2)-equivalent to β(s) = (s2 + s, s3 − 3 s2 + 1
2 s

4) implicitly defined by
14 y + 42x2 + 28 y x+ 4 y2 − 14x3 − 4x2 y + x4 = 0?
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• The signature Sα for α(t) = (t4 + t, t2) is a parametric curve

Ka|γ(t) = −
1

40

(56 t3 + 1)2

t3
, Ta|γ(t) = −

168

5
t3 −

11

5
.

• The signature Sβ for β(s) = (s2 + s, s3 − 3 s2 + 1
2 s

4) is a parametric
curve

Ka|β(s) = −
28

5

(4 s3 + 6 s2 + 3 s+ 1)2

(2 s+ 1)3
, Ta|β(s) = −

2

5
(12 s3 + 18 s2 + 9 s− 7).

• Is it true that Sα = Sβ and hence α and β are A(2)-equivalent?

– Sα and Sβ have the same implicit equation:

Ka (165 + 75Ta)− 175T2
a − 560Ta − 448 = 0. Over C it is a

sufficient condition, but not over R.

– We can look for a real reparameterization by solving Ta|α(t) = Ta|β(s)

for t in terms of s: t = 1
14 72/3 (2 s+ 1) indeed works. Yes!!!
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Is γ(t) = (t, t4 + t2) A(2)-equivalent to α and β?

No! because its signature Sγ has a different
implicit equation:

40000− 6000Ta + 14525Ka − 1575T 2
a + 3780Ka Ta − 448K2

a + 245T 3
a = 0.
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Algorithm for central projections.

INPUT: Parameterizations Γ =
(
z1, z2, z3) ∈ Q(s)3 and γ = (x, y) ∈ Q(t)2

of rational algebraic curves Z ⊂ R3 and X ⊂ R2, such that Γ̇× Γ̈ 6= 0. ∗

OUTPUT: The truth of the statement:

∃[P ] ∈ CP, such that X = P (Z).

NON-RIGOROUS OUTLINE:

1. if X is a line then Z can be projected to X is and only if

2. ε :=
(
z1+c1
z3+c3

, z2+c2
z3+c3

)
is a family of parametric curves.

3. if X is a conic then Z can be projected to X if and only if ∃c1, c2, c3 such
that ε(s) is a conic.

4. if X is neither a line or a conic then Z can be projected to X if and only if
∃c1, c2, c3 such that signature ε(s) belongs to the signature of γ(t).

∗Equivalently, Z is not a line.
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Differentially separating set of rational PGL(3)-invariants:
∆2 = 9 y(5) [y(2)]2 − 45 y(4) y(3) y(2) + 40 [y(3)]3.

KP =
729

8 (∆2)8

(
18 y(7) [y(2)]4 ∆2 − 189 [y(6)]2 [y(2)]6 (4)

+ 126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) − 25 y(4) [y(3)]2)

− 189 [y(5)]2 [y(2)]4 (4 [y(3)]2 + 15 y(2) y(4))

+ 210 y(5) y(3) [y(2)]2 (63 [y(4)]2 [y(2)]2 − 60 y(4) [y(3)]2 y(2) + 32 [y(3)]4)

− 525 y(4)y(2) (9 [y(4)]3 [y(2)]3 + 15 [y(4)]2 [y(3)]2 [y(2)]2 − 60 y(4) [y(3)]4 y(2) + 64 [y(3)]6)

+ 11200 [y(3)]8
)3

;

TP =
243 [y(2)]4

2 (∆2)4

(
2 y(8) y(2) (∆2)2

− 8 y(7) ∆2 (9 y(6) [y(2)]3 − 36 y(5) y(3) [y(2)]2 − 45 [y(4)]2 [y(2)]2 + 120 y(4) [y(3)]2 y(2) − 40 [y(3)]4)

+ 504 [y(6)]3 [y(2)]5 − 504 [y(6)]2 [y(2)]3 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) − 25 y(4) [y(3)]2)

+ 28 y(6)
(
432 [y(5)]2 [y(3)]2 [y(2)]3 + 243 [y(5)]2 y(4) [y(2)]4 − 1800 y(5) y(4) [y(3)]3 [y(2)]2

− 240y(5) [y(3)]5 y(2) + 540y(5) [y(4)]2 [y(3)] [y(2)]3 + 6600 [y(4)]2 [y(3)]4 y(2) − 2000y(4) [y(3)]6

− 5175 [y(4)]3 [y(3)]2 [y(2)]2 + 1350 [y(4)]4 [y(2)]3
)
− 2835 [y(5)]4 [y(2)]4

+ 252 [y(5)]3y(3) [y(2)]2 (9y(4) y(2) − 136 [y(3)]2)− 35840 [y(5)]2 [y(3)]6

− 630 [y(5)]2 [y(4)] [y(2)] (69 [y(4)]2 [y(2)]2 − 160 [y(3)]4 − 153 y(4) [y(3)]2 [y(2)])

+ 2100 y(5) [y(4)]2 y(3) (72 [y(3)]4 + 63 [y(4)]2 [y(2)]2 − 193 y(4) [y(3)]2 y(2))

− 7875 [y(4)]4 (8 [y(4)]2 [y(2)]2 − 22y(4) [y(3)]2 [y(2)] + 9 [y(3)]4)
)
.
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The restriction of KP |X and TP |X to a planar curve X with rational
parameterization (x(t), y(t)) is computed by substitution

y(1) =
ẏ

ẋ
, . . . , y(k) =

˙y(k−1)

ẋ
, (5)

into the formulas for invariants.

• y(1), . . . , y(k) are rational functions of t unless X is a vertical line.

• Invariants KP |X and TP |X are rational functions of t unless ∆2|X =
R(t)

0.

• ∆2|X =
R(t)

0 if and only if X is a line or a conic.

• When the restriction of invariants to the family of curves Z̃c parametrized
by ε(c, s) :=

(
z1(s)+c1
z3(s)+c3

, z2(s)+c2
z3(s)+c3

)
is computed the differentiation in (5) is

taken with respect to s.

• For the values c, such that ε(c, s) is not a line or a conic, specialization of
c commutes with restriction of invariants KP |Z̃c and TP |Z̃c.
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ALGORITHM:

1. if

∣∣∣∣∣ γ̇γ̈
∣∣∣∣∣ =

R(t)
0 then if

∣∣∣∣∣∣∣
Γ̇
Γ̈...
Γ

∣∣∣∣∣∣∣ =
R(s)

0 then return TRUE else return FALSE;

2. ε :=
(
z1+c1
z3+c3

, z2+c2
z3+c3

)
∈ Q(c1, c2, c3, s)

2;

3. if ∆2|γ =
R(t)

0 then if ∃(c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
∣∣∣∣∣ ε̇ε̈

∣∣∣∣∣ 6=R(s)
0 ∧ ∆2|ε =

R(s)
0

then return TRUE else return FALSE.

4. return the truth of the statement:

∃ (c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
∣∣∣∣∣ ε̇ε̈

∣∣∣∣∣ 6=R(s)
0 ∧ ∆2|ε 6=

R(s)
0 (6)

∧∀s ∈ R

∆2|ε 6=
R

0 ⇒ ∃t ∈ R

KP |ε =
R
KP |γ ∧ TP |ε =

R
TP |γ.
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Example: central projections of the twisted cubic

Can the twisted cubic Z parametrized by

Γ(s) =
(
s3, s2, s

)
, s ∈ R

be projected to a curve X1 parametrized by α(t) =
(

t
t3+1

, t2

t3+1

)
with an

implicit equation x3 + y3 − yx = 0?
29



• Since X1 is not a line or a conic its signature is defined and is parametrized
by invariants:

KP |γ3(t) = −
9261

50

t7 − t4 + t

(t3 − 1)8
, TP |γ3(t) = −

21

10

(t3 + 1)4

(t3 − 1)4
.

• We need to determine if there exists c such that a curve parametrized by

ε(c1, c2, c3, s) =
(
s3+c1
s+c3

, s
2+c2
s+c3

)
is not a line or a conic and has the

same signature as X1.

• This is indeed true for c=(1,0,0).

• Yes!! The twisted cubic can be projected to x3 + y3− yx = 0. A possible
projection is x = z3

z1+1 , y = z2
z1+1.
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Can the twisted cubic Z parametrized by

Γ(s) =
(
s3, s2, s

)
, s ∈ R

be projected to a curve X3 parametrized by β(t) =
(
t3

t+1 ,
t2

t+1

)
with an

implicit equation y3 + y2 x− x2 = 0?
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• Since X2 is not a line or a conic its signature is defined and parametrized
by invariants:

KP |γ2(t) =
250047

12800
and TP |γ2(t) = 0, ∀t ∈ R.

• We need to determine if there exists c such that a curve parametrized by

ε(c1, c2, c3, s) =
(
s3+c1
s+c3

, s
2+c2
s+c3

)
is not a line or a conic and has the

same constant invariants as X2.

• This is indeed true for c=(0,0,1).

• Yes!! The twisted cubic can be projected to y3+y2 x−x2 = 0. A possible
projection is x = z1

z3+1 , y = z2
z3+1.
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Can the twisted cubic be projected to quadric X3 parameterized by
γ = (t2, t)?

• Does there exists c such that a curve parametrized by ε(c1, c2, c3, s) =(
s3+c1
s+c3

, s
2+c2
s+c3

)
is a quadric, i.e ∆2|ε = 0?

• Yes!! c1 = c2 = c3 = 0

Can the twisted cubic be projected to quintic X4 parameterized by δ = (t, t5)?

• The signature of X4 degenerates to a point:

KP |γ4(t) =
1029

128
and TP |γ4(t) = 0 , ∀t.

• Does there exists c such that a curve parametrized by ε(c1, c2, c3, s) =(
s3+c1
s+c3

, s
2+c2
s+c3

)
is not a line or a conic and

KP |ε(c, s) =
1029

128
and TP |ε(c, s) = 0, ∀s ∈ R?

• NO!! Substitution of several values of s gives an inconsistent system on c.
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In the above example, although Z can be projected to each of the planar X1,
X2 and X3 none of the planar curves are PGL(3)-equivalent.
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Parallel projection example: Γ(s) =
(
s4 + 1, s2, s

)
projects to

γ1(t) =
(
t4 + t , t2

)
, with (i, j, k) = (1,2,3) and c1 = 0, c2 =

1

2
and to

γ2(t) =
(
t3 − t , t3 + t2

)
with (i, j, k) = (1,2,3) and c1 = c2 = 0

but not to γ3(t) =
(
t/(1 + t3), t2/(1 + t3)

)
. Remark: γ1(t) and γ2(t) are not

A(2)-equivalent
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Can we use the same method to solve the projection problem
for non-rational curves? In principle, yes, but

one has to be careful when describing a family of planar curves

Z̃c =

{(
z1 + c1
z3 + c3

,
z2 + c2
z3 + c3

)∣∣∣∣∣ (z1, z2, z3) ∈ Z
}

by an implicit equation. Let an irreducible algebraic curve Z ⊂ C3 be a zero
set of a prime ideal Z and

A = Z +
〈
x (z3 + c3)− (z1 + c1), y (z3 + c3)− (z2 + c2), δ (z3 + c3)− 1

〉
⊂ C[c, x, y, z1, z2, z3, δ].

Unfortunately, in general, elimination does not commute with specialization:

We can substitute a value c∗ into A and then B∗ = A∗ ∩ C[x, y] is an ideal of
Z̃c∗, but if we first compute B = A∩C[c, x, y] and then substitute c∗, we might
get a different answer.
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Example (twisted cubic)

For Z =< z1 − z2 z3, z2 − z2
3, z1 z3 − z2

2 >

Z̃c =

{(
z1 + c1
z3 + c3

,
z2 + c2
z3 + c3

)∣∣∣∣∣ (z1, z2, z3) ∈ Z
}

is defined by

0 = (−c23 − c2)x2 + (c23 + c2) y2 x+ (c1 + c3 c2)x y +

(2 c1 c3 − 2 c22)x+ (c33 − c1) y3 + (−3 c1 c3 − 3 c23 c2) y2 +

(3 c22 c3 + 3 c1 c2) y − c21 − c
3
2

unless c is in the zero set of < c23 + c2, c1 − c33 >.

Then Z̃c is defined by y2 − x+ c3 y + c23 = 0.
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Continuous vs. discrete:

Projection problem for curves vs. projection problems for finite lists of points.

If Z = (z1, . . . , zm) is a discrete sampling of a curveZ and X = (x1, . . . ,xm)

is a discrete sampling of X , these sets might not be in a correspondence under
a projection even when the curves Z and X are related by a projection.
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Projection criteria for list of points∗:

(CP) A list Z = (z1, . . . , zm) of m points with coordinates zi = (zr1, z
r
2, z

r
3),

r = 1 . . .m, projects onto a list X = (x1, . . . ,xm) of m points in R2 with
coordinates xr = (xr, yr) by a finite projection if and only if there exist
c1, c2, c3 ∈ R and [A] ∈ PGL(3), such that

[xr, yr,1]T = [A][zr1 + c1, z
r
2 + c2, z

r
3 + c3]T for r = 1 . . .m.

(PP) A list Z = (z1, . . . , zm) of m points in R3 with coordinates zi =

(zr1, z
r
2, z

r
3), r = 1 . . .m, projects onto a list X = (x1, . . . ,xm) of

m points in R2 with coordinates xr = (xr, yr) by an affine projection
if and only if there exist c1, c2 ∈ R, an ordered triplet (i, j, k) ∈
{(1,2,3), (1,3,2), (2,3,1)} and [A] ∈ A(2), such that

[xr, yr,1]T = [A]
[
zri + c1 z

r
k, z

r
j + c2 z

r
k,1

]T
for r = 1 . . .m.

∗separating sets of algebraic invariants can be used to solve group-equivalence problems for
sets of points
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More details

• Maple Code http://www.math.ncsu.edu/˜iakogan/symbolic/

projections.html

• Burdis, J. and Kogan I. “Object image correspondence for curves under
parallel and central projections”, 10 pp, accepted to the Symposium on
Computational Geometry, SoCG 2012.

• http://arxiv.org/abs/1202.1303 (implicit case needs updating)

• Burdis, J. “Object Image correspondance under projections”, 2010, Ph. D.
Thesis, NCSU.

Thank you !!!
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