Computation of Canonical Forms for Ternary Cubics

Irina Kogan (Yale University)

Marc Moreno Maza (Université de Lille 1)

July, 2002

Equivalence under a linear change of variables

$$F \sim \bar{F} \iff \exists g \in GL(m, \mathbb{C}) : \bar{F}(\mathbf{x}) = F(g \cdot \mathbf{x})$$

Example:

• $5x^2 - 2xy + 2y^2$ is equivalent to $x^2 + y^2$ under the change of variables $x \to x + y$; $y \to y - 2x$.

Problems:

- Find classes of equivalent polynomials.
- Find invariants which characterize each class.
- Find a "simple" canonical form in each class.
- Match a given F with its canonical form.

Symmetry of Polynomials

$$g \in GL(m)$$
 is a symmetry of $F \iff F(g\mathbf{x}) = F(\mathbf{x})$

• $x^2 + y^2$ is symmetric under any orthogonal map:

$$(x,y) \to \begin{cases} (\cos(\alpha)x + \sin(\alpha)y, -\sin(\alpha)x + \cos(\alpha)y) \\ (-x, -y) \end{cases}$$

• $x^8 + 14x^4y^4 + y^8$ has a sym. group with 192 elements gen. by:

$$(x,y) \to \begin{cases} (\frac{\sqrt{2}}{2}(1+i)x, \frac{\sqrt{2}}{2}(1+i)y) \\ (\frac{\sqrt{2}}{2}i(x+y), \frac{\sqrt{2}}{2}(x-y)) \\ (ix, y) \end{cases}$$

Problem: Given F find its group of symmetries G_F .

$$F \sim \bar{F} \Longrightarrow G_{\bar{F}} = gG_Fg^{-1}$$

Why classification of polynomials is difficult?

$$GL(m,\mathbb{C}) \curvearrowright \mathbb{C}^m \Longrightarrow GL(m,\mathbb{C}) \curvearrowright P_m^d = \mathbb{C}[x^1,\ldots,x^m]^d$$

 P_m^d – a linear space parameterized by $\{c_\alpha\}$ coefficients of polynomials.

$$\dim P_m^d = C_{m+d-1}^d$$

Non-regular action!

- equivalence classes (orbits) have different dimensions.
- equivalence classes are not closed subsets of P_m^d .

Continuous invariants $I(c_{\alpha})$ do not distinguish classes.

Example.

(1)
$$x^3 + axz^2 + z^3 - y^2z \not\sim (4) x^3 - y^2z$$

for
$$\varepsilon \neq 0$$
: $x \to x$, $y \to \frac{1}{\varepsilon}y$, $z \to \varepsilon^2 z$:

$$(x^3 + a xz^2 + z^3 - y^2 z) \longrightarrow (x^3 + a \varepsilon^4 xz^2 + \varepsilon^6 z^3 - y^2 z),$$

$$\lim_{\varepsilon \to 0} (x^3 + a \varepsilon^4 xz^2 + \varepsilon^6 z^3 - y^2 z) = x^3 - y^2 z.$$

$$\bar{\mathcal{O}}_{(1)}\supset \mathcal{O}_{(4)}.$$

Complete classifications of polynomials in m variables of degree d

(known to us).

- d = 2 (quadratics m-ary forms): $x_1^2 + \cdots + x_k^2$.
- m = 2 (binary forms): d = 1, 2, 3, 4.
- m = 3 (ternary forms): d = 1, 2, 3.

Some references or partial results for cases when m = 2, d = 5, 6, 7, 8; when m = 3, d = 4; when m = 4, d = 3.

Approaches

- Classical (XIX century) by Aronhold, Gordan, Cayley, ... Computation of covariants (rational invariants $I(\mathbf{x}, c_{\alpha})$).
- Hilbert

 The rings of covariants and invariants are finitely generated.

 Nullcones.
- Algebraic Geometry by Mumford, Kraft, Vinberg, Popov, ...

 Description of the algebraic variety that represents the space of orbits.
- Algebraic computational algorithms by Sturmfels, Derkson, Kemper ...

Differential Geometry (Moving Frame) Approach.

by P. Olver.

Main Idea

• Consider the graphs of polynomials $u = F(x_1, ..., x_m)$ in C^{m+1} dimensional space. Apply Cartan's equivalence method for submanifolds.

Algorithms

- To decide whether two polynomials are equivalent.
- If yes find a corresponding linear transformation.
- To find the symmetry group of a given polynomial.

Implementation

- Computing differential invariants.

 differentiation, algebraic operations, multivariate

 polynomial elimination by hand (inductive approach of

 moving frame [Kogan, 2000])
- Computing the signature variety, parameterized by differential invariants.

 ranking conversions of regular chains using the Palgie algorithm [Boulier, Lemaire, Moreno Maza, 2001]

Inhomogeneous version

$$u = f(p,q) = F(p,q,1) \Longleftrightarrow F(x,y,z) = z^3 f(\frac{x}{z}, \frac{y}{z})$$

 $\Gamma_F: u = F(x, y, z)$ homogeneous poly. in 3 variables of degree 3

 $g\downarrow$

$$\bar{\Gamma}_F: \quad u = F(\alpha x + \beta y + \lambda z, \gamma x + \delta y + \mu z, a x + b y + \eta z),$$

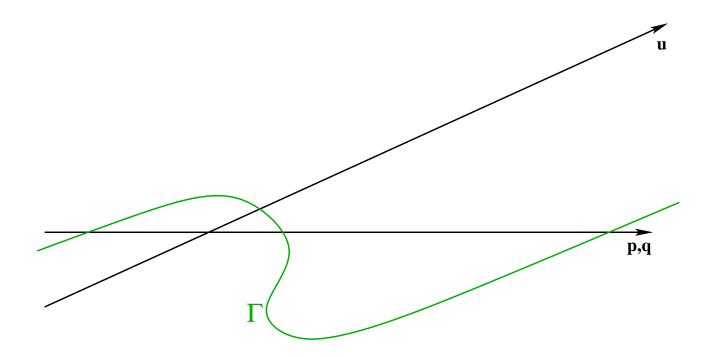
 \updownarrow

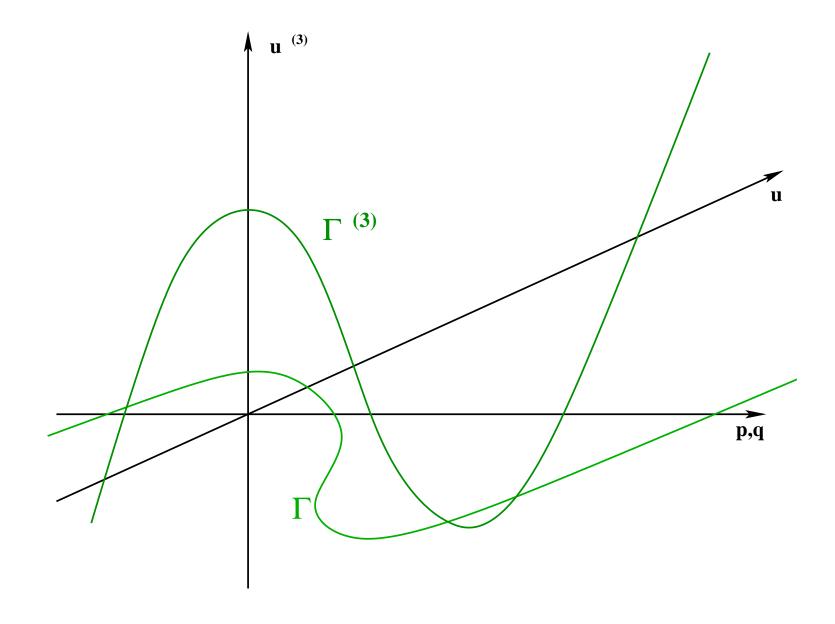
 Γ_f : u = f(p,q) inhomogeneous poly. in 2 variables of degree ≤ 3

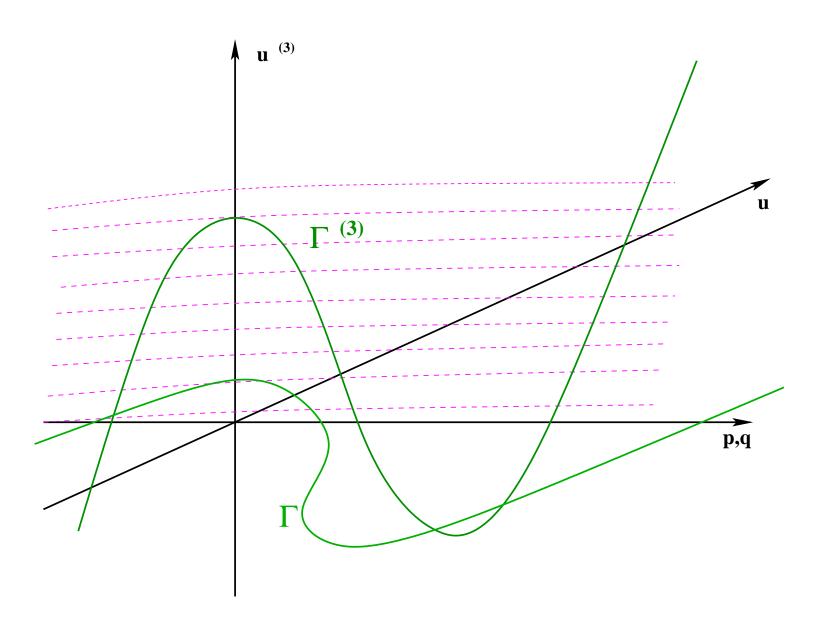
 $g\downarrow$

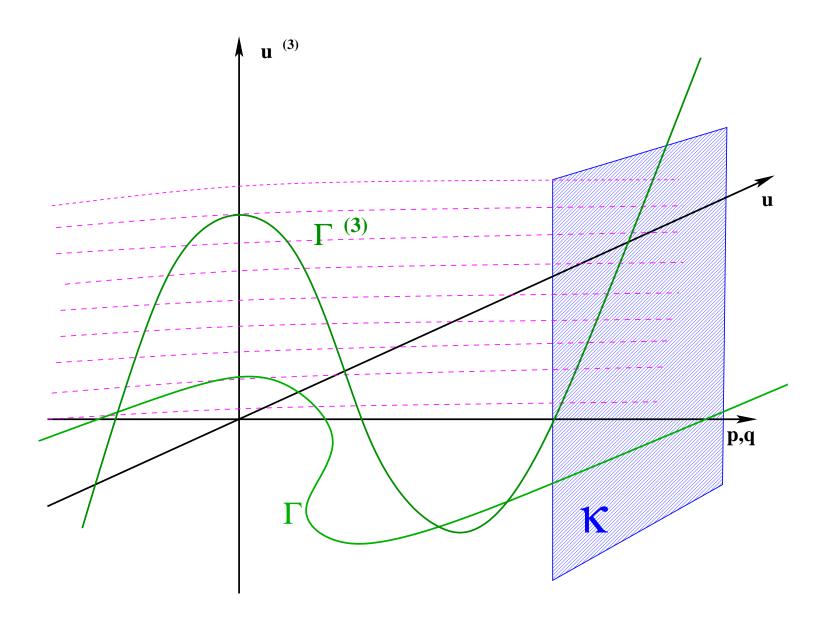
$$\bar{\Gamma}_f: \quad u = (ap + bq + \eta)^3 f\left(\frac{\alpha p + \beta q + \lambda}{ap + bq + \eta}, \frac{\gamma p + \delta q + \mu}{ap + bq + \eta}\right).$$

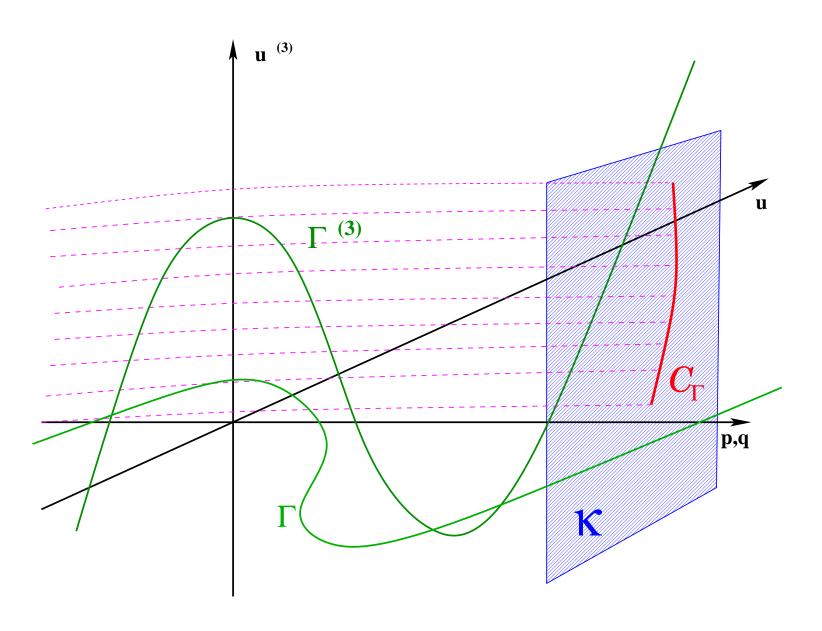
 Γ is the graph of u = f(p,q), dim $\Gamma = 2$.











Equivalence and symmetry theorems

Theorem 1. (Equivalence)

$$\bar{F} \sim F \iff \mathcal{C}_F = \mathcal{C}_{\bar{F}}.$$

Computational problem decide if two parameterization define the same set (elimination).

Theorem 2 (Symmetry) Γ_F is the graph of F.

$$\dim G_F = \dim \Gamma_F - \dim \mathcal{C}_F$$

For a generic F: dim C_F = dim Γ_F (maximal) $\Rightarrow G_F$ is finite and can be computed explicitly.

 \mathcal{C}_{Γ} is parameterizes by diff. invariants i_1, i_2, i_3 .

 $A = i_1^3/i_2^2$ is constant on each of the equivalence class!

Example.

The signature C_f for $f = p^2 + q^2 + 1$ $(F = z(x^2 + y^2 + z^2))$:

$$i_1|_f = 90 \frac{(p^2 + q^2 + 1)^2}{(p^2 - 3 + q^2)^2}, \quad i_2|_f = 270 \frac{(p^2 + q^2 + 1)^3}{(p^2 - 3 + q^2)^3},$$

$$i_3|_f = 180 \frac{(p^2 + q^2 + 1) ((p^2 + q^2 + 3)^2 - 12)}{(p^2 - 3 + q^2)^3}$$

Elimination of p and $q \Rightarrow$ equations for 1-dim'l signature variety V_f :

$$i_1(i_3 - i_2) + 30i_2 = 0, \quad 10i_2^2 - i_1^3 = 0.$$

Classes of ternary cubics:

• Irreducible:

- Regular(elliptic curves): (1)- 1-paramteric family; (2); (3).
- Singular: (4); (5).

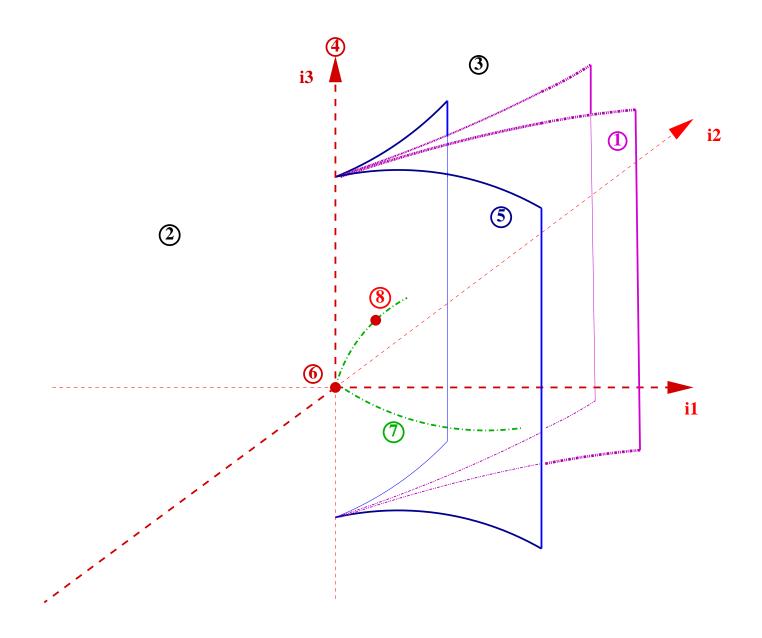
• Reducible into

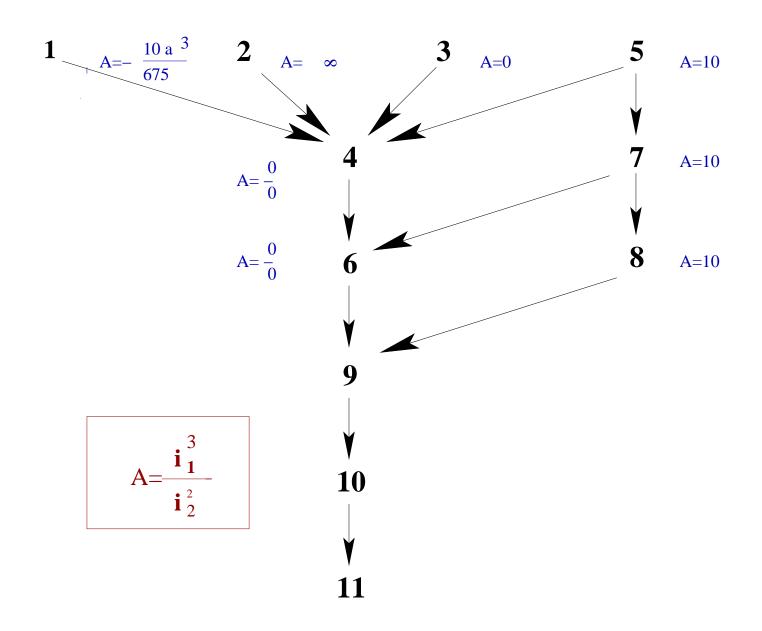
- a linear and a quadratic factor: (6); (7).
- three linear factors: (8); binary form is disguise (9), (10), (11).

Irreducible cubics.

Regular (Elliptic Curves):

- (1) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{axz^2} + \mathbf{z^3} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{ap} + \mathbf{1} \mathbf{q^2}$, non-equivalent for different values of a^3 ; $a \neq 0$ (else $F \sim (3)$), $a^3 \neq -27/4$ (else $F \sim (5)$), $|G_F| = 18 \times 3$ $675 i_1^3 + (10 a)^3 i_2^2 = 0.$
- (2) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{xz^2} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{p} \mathbf{q^2}$, $|G_F| = 36 \times 3$, $|i_2 = 0$.
- (3) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{z^3} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{1} \mathbf{q^2}$, $|G_F| = 54 \times 3$, $|i_1 = 0$.





Application to ternary cubics

$$F(x, y, z), \deg F = 3$$

- Fast algorithm to determine the class of F.
- An algorithm to compute a change of variables from *F* to its canonical form.
- Classification of the symmetry groups.
- A geometric description of the equivalence classes, which depicts information about the size of the symmetry group and inclusions of the closures of the classes.

Conclusions

- Differential invariants for polynomials = covariants in the classical sense.
- The set of differential invariants that parameterize signature depends only on the **group action** and **the number of variables**, but **not on the degree**.
- For m=2,3 the complete set of invariants is computed.

Further projects

- new classifications (e. g. for binary forms),
- other group actions,
- other fields (\mathbb{R} , finite fields).

More results with moving frames

- Binary forms: F(x,y), $\deg F = n$ (F is homogeneous).
 - complete set of differential invariants (P. Olver).
 - algorithm (coded in Maple) to compute G_F (Olver, Kogan).
- Ternary forms F(x, y, z), $\deg F = n$.
 - complete set of differential invariants (Kogan).
 - necessary and sufficient for F to be equivalent to $x^n + y^n + z^n$ (Kogan, thanks to Schost, Lecerf).

Irreducible cubics.

Regular (Elliptic Curves):

- (1) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{axz^2} + \mathbf{z^3} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{ap} + \mathbf{1} \mathbf{q^2}$, non-equivalent for different values of a^3 ; $a \neq 0$ (else $F \sim (3)$), $a^3 \neq -27/4$ (else $F \sim (5)$), $|G_F| = 18 \times 3$ $\boxed{675 i_1^3 + (10 a)^3 i_2^2 = 0}.$
- (2) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{xz^2} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{p} \mathbf{q^2}$, $|G_F| = 36 \times 3$, $|i_2 = 0$.
- (3) $\mathbf{F} \sim \mathbf{x^3} + \mathbf{z^3} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} + \mathbf{1} \mathbf{q^2}$, $|G_F| = 54 \times 3$, $i_1 = 0$.

Singular:

- (4) $\mathbf{F} \sim \mathbf{x^3} \mathbf{y^2z}$, $\mathbf{f} \sim \mathbf{p^3} \mathbf{q^2}$, $G_F \sim x \to x, y \to \alpha y, z \to \alpha^{-2}z$, (1-dim'l) $i_1 = 0, \quad i_2 = 0$.
- (5) $\mathbf{F} \sim \mathbf{x^2}(\mathbf{x} + \mathbf{z}) \mathbf{y^2}\mathbf{z}$, $\mathbf{f} \sim \mathbf{p^2}(\mathbf{p} + \mathbf{1}) \mathbf{q^2}$ $|G_F| = 6 \times 3$ $i_1^3 - 10 i_2^2 = 0$.

Reducible cubics:

A linear and an irreducible quadratic factor:

- (6) $\mathbf{F} \sim \mathbf{z}(\mathbf{x^2} + \mathbf{yz}), \quad \mathbf{f} \sim (\mathbf{p^2} + \mathbf{q})$ $G_F \sim \text{non-commutative 2-dim'l (affine) group:}$ $x \to x + \alpha z, \ y \to -2\alpha x + y \alpha^2 z, \ z \to z,$ $x \to \beta x, \ y \to \beta^4 y, \ z \to \beta^{-2} z,$ $i_1 = 0, \ i_2 = 0, \ i_3 = 0.$
- (7) $\mathbf{F} \sim \mathbf{z}(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)$, $\mathbf{f} \sim \mathbf{p}^2 + \mathbf{q}^2 + \mathbf{1}$ $G_F \sim \text{rotation in the } xy \text{ plane (1-dim'l)}$ $i_1(i_3 - i_2) + 30 i_2 = 0, \ 10 i_2^2 - i_1^3 = 0.$

Three linear factors:

- (8) non-coplaner \iff $\mathbf{F} \sim \mathbf{xyz}$, $\mathbf{f} \sim \mathbf{p} \mathbf{q}$; $G_F \sim \mathbb{R}^2 : \{x \to \alpha x, y \to \beta y, z \to \frac{1}{\alpha \beta} z\}$. $[i_1 = 90, i_2 = 270, i_3 = 180.]$
- (9) different, coplaner $\Leftrightarrow \mathbf{F} \sim \mathbf{x} \mathbf{y} (\mathbf{x} + \mathbf{y}), \mathbf{f} \sim \mathbf{p} \mathbf{q} (\mathbf{p} + \mathbf{q})$ $G_F \sim 3$ -dim'l $\{z \mapsto \alpha x + \beta y + \gamma z\} \times G_{xy(x+y)},$ $(G_{xy(x+y)} \sim S_3 \times Z_3 \subset GL(2, \mathbb{C}) \curvearrowright (x, y) \text{ preserves } xy(x+y).$
- (10) two repeated $\Leftrightarrow \mathbf{F} \sim \mathbf{x^2} \mathbf{y}, \quad \mathbf{f} \sim \mathbf{p^2} \mathbf{q}$ $G_F \sim 4\text{-dim'l: } \{x \to \alpha x, \quad y \to \frac{1}{\alpha^2} y, \quad z \to \beta x + \gamma y + \delta z\}.$
- (11) three repeated $\Leftrightarrow \mathbf{F} \sim \mathbf{x^3}$, $\mathbf{f} \sim \mathbf{p^3}$. $G_F \sim 4$ -dim'l $GL(2, \mathbb{C}) \times Z_3$ ($GL(2, \mathbb{C}) \curvearrowright (y, z)$ and $Z_3 \curvearrowright x$).

 (9), (10) and (11) are binary forms in disguise.

An example

Parameterization of C_F :

$$\begin{cases}
0 &= (3p+4)(-q+p)(q+p)(3p^3+2p^2+3pq^2-2q^2)-6(-3pq^2-q^2+p^2)^2 \\
0 &= (-q+p)(q+p)(81p^6+972p^5q^2+72p^5+1269p^4q^2+32p^4-144p^3q^2+ \\
+972p^3q^4+1107p^2q^4-64p^2q^2+72pq^4+135q^6+32q^4) \\
-6(-3pq^2-q^2+p^2)^3\mathbf{I_2} \\
0 &= (16p^2+72p^3+108p^4+54p^5-16q^2+72pq^2+81p^2q^2+ \\
+27p^3q^2+27q^4)(-q+p)^2(q+p)^2-9(-3pq^2-q^2+p^2)^3\mathbf{I_3}
\end{cases}$$

Cartesian equation of C_F :

$$7200\mathbf{I_1}^3 - 1692\mathbf{I_1}^2 - 504\mathbf{I_1I_2} - 3780\mathbf{I_1I_3} - 12\mathbf{I_2}^2 - 180\mathbf{I_2I_3} - 675\mathbf{I_3}^2 + 1440\mathbf{I_1} + 40\mathbf{I_2} + 300\mathbf{I_3}^2 + 1440\mathbf{I_3} + 40\mathbf{I_3} + 40\mathbf{I_3}$$

Ranking conversions

• For $\mathcal{R} = x > y > z > s > t$ and $\overline{\mathcal{R}} = t > s > z > y > x$ we have:

$$\mathsf{palgie}(\left\{\begin{array}{l} x-t^3\\ y-s^2-1\\ z-s\,t \end{array}\right.,\mathcal{R},\overline{\mathcal{R}}) \ = \ \left\{\begin{array}{l} s\,t-z\\ (x\,y+x)s-z^3\\ z^6-x^2y^3-3x^2y^2-3x^2y-x^2 \end{array}\right.$$

• For $\mathcal{R} = \dots > v_{xx} > v_{xy} > \dots > u_{xy} > u_{yy} > v_x > v_y > u_x > u_y > v > u$ we $\overline{\mathcal{R}} = \dots = u_x > u_y > u > \dots > v_{xx} > v_{xy} > v_{yy} > v_x > v_y > v$ we have:

$$\mathsf{pardi}(\left\{ \begin{array}{l} v_{xx} - u_x \\ 4\,u\,v_y - (u_x\,u_y + u_x\,u_y\,u) \\ u_x^2 - 4\,u \\ u_y^2 - 2\,u \end{array} \right. \quad \mathcal{R}, \overline{\mathcal{R}}) \quad = \quad \left\{ \begin{array}{l} u - v_{yy}^2 \\ v_{xx} - 2\,v_{yy} \\ v_y\,v_{xy} - v_{yy}^3 + v_{yy} \\ v_{yy}^4 - 2\,v_{yy}^2 - 2\,v_y^2 + 1 \end{array} \right.$$

PARDI, PODI, PALGIE

Input: In k[X]

- \circ two rankings $\mathcal{R}, \overline{\mathcal{R}}$ over X,
- \circ a \mathcal{R} -triangular C set such that $\mathbf{Sat}(C)$ is prime.

Output: a $\overline{\mathcal{R}}$ -triangular set \overline{C} such that de $\mathbf{Sat}(C) = \mathbf{Sat}(\overline{C})$.

Algo: three cases:

PALGIE: Prime ALGebraic IdEal implemented in Aldor, C and Maple,

PODI: Prime Ordinary Differential Ideal, implemented in C,

PARDI: Prime pARtial Differential Ideal, implemented in Maple.

```
P := C; \overline{C} := \emptyset
H := \{ \mathsf{init}(p, \mathcal{R}) \text{ for } p \in C \}
while (P \neq \emptyset) repeat
        p := first P; P := rest P
        p := \operatorname{red}(p, \overline{C})
        (p, P', H') := \text{ensureRank}(p, \overline{\mathcal{R}}, C)
        (P,H) := (P \cup P', H \cup H')
        p = 0 \Longrightarrow iterate
        v := \mathsf{mvar}(p)
        if (\forall q \in \overline{C}) \text{ mvar}(q) \neq v \text{ then}
                \overline{C} := \overline{C} \cup \{p\}
        else
                 (g, P', H') := \gcd(p, \overline{C}_v, \overline{C}_v^-, C)
                 (P,H) := (P \cup P', H \cup H')
                 \overline{C} := \overline{C} \setminus \{\overline{C}_v\} \cup \{g\}
        \overline{C} := \mathsf{saturate}(\overline{C}, H)
return \overline{C}
```