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Object-image correspondence problem for algebraic curves:
(aka “projection problem”):

Given: An algebraic curve Z C R3 and an algebraic curve X C R2.

Decide: 37 a central (or a parallel) projection P: R3 — R? such that

X = P(2)

e a central projection models a pinhole camera (or a finite camera);

e a parallel projection (or a weak perspective projections, or an affine
camera) approximates finite camera when the distance between the object
and camera is much larger than the depth of the object



Pinhole camera

11 degrees of freedom:
e location of the center (3 degrees of freedom);
e position of the image plane (3 degrees of freedom);

e choice of affine coordinates on the image plane up to overall scaling (5
degrees of freedom).



Camera model:

. — P1121 T P1220 T P1323 T+ P14

P: R3 5 R?

p31 21 + P32 20 + P33 23 + P34

_ p2121 + po2 2o + P23 23 + P24

p3121 + P32 20 + 3323 + P34

(1)

12 parameters p; ;, equivalent up to scaling by a nonzero constant p;; — Ap;;.

Projective camera model:

xr
[P]: P3 — P?: y
1

e [] — homogeneous coordinates.

o R" — P". z=(21,...,2n) — [21,..

P11 P12 P13 Pl4 |
P21 P22 P23 D24

| P31 P32 P33 D34

Lz, 1] = [2].

e points [z1,...,2n,0] € P™ are said to be at infinity




Camera center:

[P]: P3 — P?;

=

P11
P21
P31

P12
p22
P32

P13 P14
P23 P24
P33 P34

e For P to be surjective, the 3 x 4 matrix must have rank 3.

e [P]: P3 — P2 is undefined at the unique point [29, 23, 29, 2

the center of the projection, such that P (zl, z2, z3,

Types of cameras: (Hartley R.I., Zisserman A., Multiple View Geometry in Computer Vision, 2004)

9 eP3-
N1 =(0,0,0)T.

finite: center is not at co <= left 3 x 3 submatrix of P is non-singular

(central projections with 11 degrees of freedom);
infinite: center is at oo;

affine: center is at co and the preimage of the line at oo in P2 is the plane at

infinity in P3 <= the last row of [P] is [0, 0, 0, 1],

(parallel projections with 8 degrees of freedom).




How one can solve object-image correspondance problem
for central projections (finite cameras)?

Straightforward approach: Set up a system of polynomial equations on 12
unknown projection parameters p;;. Decide if the system has a real
solution. (Eliminate 12 parameters.)

Our approach: Use the relation between the projection problem and the
group-equivalence problem to set up the system of equations that involves
the center of the projection only (3 parameters). Decide if the system has
a real solution. (Eliminate 3 parameters.)

Advantage: We need to eliminate only 3 unknown parameters vs. 12 in the
“straightforward” approach.



Projection criterion for algebraic curves
Given Z C R3 and X C R2, 3 a central projection P such that X = P(2)

)

3 c¢q1,c¢0,c3 € R such that X is PGL(3)-equivalent to a planar curve:

~ Z1—C1 29 —Co
Ze = ( ; ), where (Zl,ZQ,Z3) ez
<3 — €3 <3 — €3

c = (c1, co, c3) is the center of the projection.

A is the left 3 x 3 submatrix of P,

20
Pob'=| 010 0 | and B := 2 1. (2)

00 10 O 0O 1 —c3

O 00 1

Note that [A] belongs to PGL(3) and

[Pol[B]lz1, 22, 23, 111 = [21 — ¢1, 20 — ¢2, 23 — ¢3]”.



We reduced the | object-image correspondence problem |to a

group-equivalence problem with parameters|.

Group-equivalence problem for planar curves:

Let a group G act on R2. Given two planar algebraic curves X7, X, decide if
there exists A € GG such that X1 = A(X5).




Proposed solution: is based on an algebraic adaptation of Cartan’s equivalence
method for solving local equivalence problem for smooth submanifolds.

Differential signatures of smooth curves in applications to
computer vision:

[1 ] Calabi E., Olver PJ., Shakiban C., Tannenbaum A., Haker S., Differential
and numerically invariant signature curves applied to object recognition
(1998)

[2 ] Musso E., Nicolodi L., Invariant signature of closed planar curves (2009)

[3 ] Hoff D., Olver PJ., Extensions of invariant signatures for object
recognition, J. Math. Imaging Vision (2013)
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Algebraic signatures for algebraic curves in R=.
e Define a notion classifying set Z of rational differential invariants.
e Define a notion exceptional curves with respect to the set 7.

e Use these invariants to define signatures of non-exceptional curves.

e Provethat\ X1 =g X> <= Sy, = Sy, |for non exceptional curves.

2

e Construct classifying sets of rational differential invariants for specific
actions, e.g. PGL(3)-action on R2:

a11T + ai2y + a1z

]
a31 T + a3z2y + a3z
a>1 T + az>y + an3

a31T + az2y + a3z

r =

g:
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Jet variables:

Differential invariants depend on the derivatives: y(k) — k-the derivative of y
with respect to =.

Let F'(x,y) be the implicit equation of X (not a vertical line). Then by implicit
differentiation:

y)(‘ Fy7 y)(’ - Fy3 )

are rational functions on X’.

If X is a rational curve with parametrization (:c(t), y(t)), then

- (k—1)
y D=2 yW=r

€T €T
are rational functions: R— — R.

Y
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Classical GG-curvatures and GG-arc-lengths:

e
(1+[y(1)]2)3/2’

SE(2): k= ds=\/1+[y(1)]2dt — msziil—’;, Kssy - - -

3\ _ 2
SA(2): = 3k (kss+3K>) 5/<LS, do = k1/3ds —= lo = Eil_g, Lo, - -

0 x8/3
: 6lanata—T 2y —9ua 1/3 d
PGL(3): n = 2Haaak 8’;3 Ho B dp=,uo/ doa — npzd—z,....

Y7o

Theorem:

o Ipgr = {K =n3, T= np} is a classifying set of PGL(3) rational
differential invariants.

e Ipg-exceptional curves are lines and conics (parabola, an ellipse, or
a hyperbola)

*Inductive formulas |. K. Two algorithms for a moving frame construction, Canad. J. of Math
(2003)
13



Classifying set of rational 7PGL(3)-invariants:

~
[

Ay =945 [2 45, ,(3) @ + 20 [,(3]3.

729
8 (A2)®
126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) _ 25 y(4) [y(3)]2)
189 [y®]2 [yP]* (4 [y®]? + 15y2 y*)
210y [y (63 [y™]? [yP1? — 60y [yP17 P + 32 [y*]F)
525 My (9 [y [y ]2 + 15 [y ]2 [yP)2 [y?]2 — 60y [y]* 42 4 64 [y

3
11200 [y®]? ) ;

2)14
A oo
8y Do (99 [yP1° =36y yP [yP]? — 45 [y W7 [yP]? + 120y [y D)7y -
504 [y(9]3 [yP]° — 504 [y(®]? [y2]® (9y®) y® y2 4 15 [y*D]2 4D — 25y [ 3]
28y (432 [y™)? [yP1? [y PP + 243 [y 17y [y])* — 1800y y*) [yP]3 [y
240y [y)° 4 + 540y [y]? [y] [™P]° 4 6600 [y D]? [y*]* y> — 2000y
5175 [y™]3 [y [y ]2 4 1350 [yP]* [yP]3) — 2835 [y®)]* [y(2)]*

252 [y3]3y3) [y2]? (9y™) 4> — 136 [y*)])?) — 35840 [y>]? [y*]°

630 [y]? [y™] [y®] (69 [yM]? [y*]? — 160 [y®]* — 153y [y]? [y>])
2100y [y*®]2 43 (72 [yP]* 4 63 [y V]2 [yP]? — 193 y™) [y3]2yP)
7875 [y1* (Bly™12 y@)2 - 22y [y [y @] + 9 %)

(18 y D [y2]* Ay — 189 [y(9]? [y(2)1°

14
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Projective signature of planar curves.

e Invariants K|y and T'| y are rational functions on X’ unless

As|y = 0 <= X is aline or a conic (exceptional curves)).

e PGL(3)-signature of a non-exceptional curve X is the image Sy of the
rational map

Sla = (Klx, T|x): X = R,

Theorem. If X1 and X have degree greater than 2 then

X = Ay <= Sy =Sy,
L por) "2 T oA
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Examples of solving PG L(3)-equivalence problem

Is a(t) = (t%?l—tl’ t13o—|i> implicitly defined by 23 4+ ¢y> — 10zy = 0

PGL(3)-equivalent to

B(s) = (s3+3 543 ST2 o4 1) implicitly defined by y3 — zy 4+ 1 = 0?

s+1

16



2 . .
e The signature S, for a(t) = <t§3_t1, t130_|f1> IS a parametric curve

9261 (t°® —t3+1)3¢3

Kla(t) = =53 t3-1)8
21 (134 1)4
T = —J5 @

e The signature Sg for B(s) = (33"‘3 ij_"f ST2 g4 1) is a parametric
curve

9261 1

Kls(s) = = 50 (s243s5+3)8s8
(s°4+9s®°4+36s"+83s°+120s°+111s*+65s°>+24s2 465+ 1),
(s°4+6s°+15s*+19s3+ 1252+ 354 1)2
21 (s +3s2+3s+2)4

Tg(s) = -

10 (s2+3s+3)4s%

e Isittrue that S, = Sz and hence o and 3 are PGL(3)-equivalent?

— So and Sg have the same implicit equation:

0 = 62523502209 4+ 396974617207 — 6401203200 K + 5250987000 T2
— 2032128000 K T + 163840000 K° + 25930800073 4+ 53760000 K T?

4+ 44100007% -



Over C it is a sufficient condition, but not over R.

We can look for a real reparameterization ¢ = ¢(s) by solving K|n(t) =
K|g(s) and T'|o(t) = T|g(s) for t in terms of s: t = s+ 1 indeed works.
Yes!!!

The PGL(3) transformation that brings o to S5 is

10y 10
r— — y— —.
x x
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Curves X7 and X5

= 1000 -®00 - 600 -400 -200
L L 1 L 1 L 1 L 1

0
!

have the same signature

17



3 w2

Is v(w) = | w1 w1
PGL(3)-equivalent to o and 37

and so Sy = (

) implicitly defined by y3 — 22 + 242 = 0

No! because its signature is different:

250047
Kl|y(w) = 15800 and T'|y(w) =0
2, O) is a point!

18



Returning to the projection problem ...
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Algorithm for central projections (rational curves).

INPUT: Rational parameterizations (zl(s), 2>(8), z3(s)) c Q(s)3 and

<ac(t), y(t)) € Q(t)? of algebraic curves Z C R3 and X C R2, where Z
is not a line.

OUTPUT: The truth of the statement:

3 central projection P such that X = P(Z2).

NON-RIGOROUS OUTLINE:

1. if X is a line then Z can be projected to X if and only if Z is coplanar.

2. €c = (28:2, 28:2) is a family of parametric curves.

3. if X is a conic then Z can be projected to X if and only if ¢ = (¢1, ¢2, ¢3),
such that e.(s) parametrizes a conic.

4. if X is neither a line or a conic then Z can be projected to X if and only
if 3¢ such that the signature of the curve parametrized by e.(s) equals to
the signature of X.

20



Maple Code over C is available at
http:

//www.math.ncsu.edu/~iakogan/symbolic/projections.html

21
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Example: central projections of the twisted cubic

Can the twisted cubic Z parametrized by

M(s) = (83, 2, S) ,sER

104

-10 =
- 1000 1,000, 100

be projected to a curve X7 parametrized by a(t) = ( t%itl , t13(1:21> with an

implicit equation z> + y3 — 10y 2z = 07

22



e Define the family of curves
ee(s) = <21(S)—01 22(8)—62) — (83—01 82—02>

z3(s)—c3’ z3(s)—c3 s—c3’ s—c3
e Compute invariants K|¢(c, s) and T'|¢(c, s) with indeterminant values of c.

e The signature of Xy is parametrized by invariants:

21 (P41
10 (B3 - 1)F

0261 (t° —t3 +1)3+¢3
50 (t3—-1)8

K|a(t) — =

e 37 ¢ such that (Klc(c, s), T|e(c,s)) parametrize the same signature as
(Kla(t), T|a(t))?

e This is indeed true for c=(-1,0,0).
e Yes!! The twisted cubic can be projected to 2> + y> — 10y x = O.

e A possible projection is z = ;10%, y = ;10%.

|t follows that the twisted cubic can be projected to X» because A PQ%( ) Xo.
3

23



Can the twisted cubic Z parametrized by

(s) = (s3, 2, 3) , s €ER

104

_—

-1000 1,000. 100

be projected to a curve X3 parametrized by ~(¢t) = ( tfl : tj:) with an

implicit equation y3 + y2 z — 22 = 07?

24



e The signature of X3 degenerates to a point.

250047
12300

Kl(t) = and T'|4(t) =0, VteR.

3 2
e J7 c such that a curve parametrized by e.(s) = (S - _CQ> has the

s—c3’ s—c3
same constant invariants as X3?

25



The signature of X3 degenerates to a point.

250047

Klv(t) = <5500

and T'|4(t) =0, VteR.

33—11 32—02

s—c3? s—c3

37 ¢ such that a curve parametrized by e.(s) = (
same constant invariants as X3?

This is indeed true for ¢c=(0,0,-1).

> has the

Yes!! The twisted cubic can be projected to y3 + y2 2z — 22 = 0.

A possible projectionis z = _ "1, y = 23"31.

Recall that X’3 is not PGL(3)-equivalent to X7 and X>.

25



Can the twisted cubic be projected to a parabola parametrized by (¢, t2)?

e Does there exists c such that a curve parametrized by

33—01 32—02>

ec(s) = ( :

s—c3 S§—c3
is a quadric?
e Yes!l ec(s)isaconiciffcy = a3, c¢o=a?, c3=aforallacR.

e A projection of a twisted cubic is a conic if and only if the center of the
projections is located on the twisted cubic!

26



Can the twisted cubic be projected to quintic parameterized by (¢, t°)?

e The signature of the quintic degenerates to a point:

1029
K((t) = and T'(t) =0, Vt.
(1) 153 ()
e Does there exists ¢ such that
1029
Kle(e,s) = 153 and T'|¢(c,s) = 0, Vs € R?

e NO!! Substitution of several values of s gives an inconsistent system on c.

27



Relations between invariants of object and image

Invariants with respect to which group-action on R3? on R2?

e on R3 - standard linear action of G£(3)(centro-affine invariants) or S£(3)-
action (centro-equi-affine invariants)

e on R? - projective action (projective invariants)
28



Centro-equi-affine invariants for space curves in terms of the
invariants of the planar images:

Theorem: Differential algebra of centro-equi-affine invariants of space is
generated by:

o 7 = P5(n)

o ( =23F) (—11/3>

Mo

e dp = P3(dp),

where
e 1 and dp are planar projective curvature and arc-length;
e 1, and da are planar equi-affine curvature and arc-length;

e Fj is the standard central projection x = %, T = % from the origin to the
plane z3 = 1:
29



Centro-equi-affine curvature, torsion and arc-lengths:
Let Z C R3 be parametric curve z(t) = ((z1(t), 22(t), z3(t)), then

e centro-equi-affine arc-lengths dS := |z, z, Z| dt (undefined when Z is
contained in the plane spanned by z(0) and z(0)).

e centro-equi-affine torsion = |zg, zgg, zsg| (T = 0 <= Z is coplanar).

e centro-equi-affine curvature x = |z, zgg, zgg|

Theorem «, 7 and dS generate differential algebra of centro-affine invariants.

*Olver, P. J. Moving frames and differential invariants in centro-equi-affine geometry,
Lobachevskii J. of Math. (2010)
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Relationship between two generating sets:

o A_azssa/—%a/g—%ﬁ'/GQ_
= 32/3 ,8/3 !
o (= (3a)"1/3

e dp = (3a)l/3ds;

where a = kg + 2 7 is identically zero iff Po(Z) is a line or a conic.
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Thank you!
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