2017 SIAM Conference on Applied Algebraic Geometry

Atlanta, Georgia

Algorithm for Computing μ -Bases of Univariate Polynomials

Irina Kogan

North Carolina State University

joint work with

Hoon Hong and Zachary Hough

J. of Symbolic Comput., Vol. 8, No 3, (2017), 844 - 874

This project was supported, in part, by NSF grant CCF-1319632.

The syzygy module

- $\mathbf{a}(s) = [a_1(s), \dots, a_n(s)] \in \mathbb{K}[s]^n$ is a univariate polynomial row vector $\mathbf{a} \neq 0$ and n > 1 over a field \mathbb{K} .
- The syzygy module of a consists of column vectors in K[s]ⁿ, which are in the kernel of a:

$$\operatorname{syz}(\mathbf{a}) = \{\mathbf{h} \in \mathbb{K}[s]^n \,|\, \mathbf{a} \,\mathbf{h} = 0\}.$$

Notation:

- n is the length of a.
- $d = \max_{i \in \{1,...,n\}} \deg a_i$ is the degree of a.

Remark: We don't assume that gcd(a) = 1!

Definition of a μ **-basis:**

Definition: a μ -basis of syz(a) is set of polynomial vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{n-1}$, s. t.:

1. $\mathbf{u}_1, \ldots, \mathbf{u}_{n-1}$ generate syz(a);

2. $LV(\mathbf{u}_1), \ldots, LV(\mathbf{u}_{n-1})$ are linearly independent over \mathbb{K} , where

for $h \in \mathbb{K}[s]^n$, such that $t = \deg h$, the leading vector

 $LV(\mathbf{h}) = [\operatorname{coeff}(h_1, t), \dots, \operatorname{coeff}(h_m, t)]^T \in \mathbb{K}^n.$

Example: $\mathbf{a} = \begin{bmatrix} 1 + s^2 + s^4 & 1 + s^3 + s^4 & 1 + s^4 \end{bmatrix}$. A μ -basis of the syz(a) is comprised by

$$\mathbf{u}_{1} = \begin{bmatrix} -s \\ 1 \\ -1+s \end{bmatrix} \text{ and } \mathbf{u}_{2} = \begin{bmatrix} 1-2s-2s^{2}-s^{3} \\ 2+2s+s^{2}+s^{3} \\ -3 \end{bmatrix}.$$

• deg $u_1 = 1$ and $LV(u_1) = [-1, 0, 1]^T$

• deg $u_2 = 3$ and $LV(u_2) = [-1, 1, 0]^T$

Why are μ -bases nice?

Proposition: For a generating set u_1, \ldots, u_{n-1} of syz(a), ordered so that $deg(u_1) \leq \cdots \leq deg(u_{n-1})$, the following properties are equivalent:

- 1. [independence of the leading vectors] $LV(\mathbf{u}_1), \ldots, LV(\mathbf{u}_{n-1})$ are independent over \mathbb{K} .
- 2. [optimality of the degrees] If h_1, \ldots, h_{n-1} is any generating set of syz(a), such that deg $h_1 \leq \cdots \leq deg h_{n-1}$, then deg $u_i \leq deg h_i$ for $i = 1, \ldots, n-1$.
- 3. [sum of the degrees]

 $\deg \mathbf{u}_1 + \cdots + \deg \mathbf{u}_{n-1} = \deg \mathbf{a} - \deg \gcd(\mathbf{a}).$

4. [more...] [see Song and Goldman, 2009]

Remarks:

- The concept of a μ -basis was first introduced by Cox, Sederberg, Chen (1998), motivated by the search for new, more efficient methods for solving implicitization problems for rational curves, and as a further development of the method of moving lines proposed by Sederberg and Chen (1995).
- μ-basis of syz(a) is not unique, but the degrees of its elements are canonical. They where denoted by μ₁,..., μ_{n-1} in Cox, Sederberg, Chen (1998), which gave rise to the name "μ-basis".
- One can study the μ -type of a as in Cox and Iarrobino "Strata of rational space curves." Comput. Aided Geom. Design, 32:50–68, 2015

Algorithms to compute μ -bases

n = 3 algorithms:

- Cox, Sederberg and Chen (1998)
 - degrees μ_1 and μ_2 are determined prior to computing of μ -basis
 - μ -basis constructed from null vectors of two linear maps $A_1 \colon \mathbb{K}^{3(\mu_1+1)} \to \mathbb{K}^{\mu_1+d+1}$ and $A_2 \colon \mathbb{K}^{3(\mu_2+1)} \to \mathbb{K}^{\mu_2+d+1}$
 - It is not clear how to generalize to arbitrary n.
- Zheng and Sederberg (2001), Chen and Wang (2002) (Buchberger-type reduction)

arbitrary n algorithms:

- Song and Goldman (2009) (generalization of Chen and Wang to arbitrary *n*)
- Hong, Hough and IK (2017) (computing a "partial" reduced row-echelon form of a Sylvester-type matrix)

Main ingredients

1. Explicit isomorphism $\flat \colon \mathbb{K}^{n(d+1)} \to \mathbb{K}[s]_d^n$:

Example:
$$n = 3, d = 4$$

 $v = [-1, -1, 2, 1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1]^T \in \mathbb{K}^{15}$
 $v^{\flat} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} + s \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + s^2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s^3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + s^4 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
 $= \begin{bmatrix} -1 + s + s^2 - s^4 \\ -1 - s \\ 2 + s^4 \end{bmatrix}.$

Main ingredients (cont)

2. For $\mathbf{a} = \sum_{0 \le i \le d} s^i [c_{i1}, \dots, c_{in}] \in \mathbb{K}[s]_d^n$ we define a Sylvester type matrix:

There are d + 1 blocks, thus this is $(2d + 1) \times n(d + 1)$ matrix over \mathbb{K}

Example

$$\mathbf{a} = \begin{bmatrix} 2+s+s^4 & 3+s^2+s^4 & 6+2s^3+s^4 \end{bmatrix}$$

= $\begin{bmatrix} 2 & 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} s + \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} s^2 + \begin{bmatrix} 0 & 0 & 2 \end{bmatrix} s^3 + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} s^4$

is $(2d+1) \times n(d+1) = 9 \times 15$ matrix over \mathbb{K}

Key (but simple) observations:

$$A = \begin{bmatrix} c_{01} & \cdots & c_{0n} \\ \vdots & \cdots & \vdots & c_{01} & \cdots & c_{0n} \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \cdots \\ c_{d1} & \cdots & c_{dn} & \vdots & \cdots & \vdots & \cdots & \vdots \\ & & & c_{d1} & \cdots & c_{dn} & \cdots & \vdots & \cdots & \vdots \\ & & & & & c_{d1} & \cdots & c_{dn} \end{bmatrix}$$

- $v \in \ker A$ if and only if $v^{\flat} \in syz_d(\mathbf{a})$.
- Let A_{*k} be a non-pivotal column: $A_{*k} = \sum_{i < k: \text{pivotal}} \alpha_i A_{*i}$ for some $\alpha_i \in \mathbb{K}$,

then $v \in \mathbb{K}^{n(d+1)}$ such it has $-\alpha_i$ in the *i*-th component, 1 in the *k*-th component and the rest are zeros, is in the ker *A*.

• Non-pivotal columns have *n*-periodic structure:

$$A_{*k} = \sum_{i < k} \alpha_i A_{*i} \quad \Rightarrow \quad A_{*k+n} = \sum_{i < k} \alpha_i A_{*i+n}$$

$$\mathbf{a} = \begin{bmatrix} 2+s+s^4 & 3+s^2+s^4 & 6+2s^3+s^4 \end{bmatrix}$$

 $p = \{1, 2, 3, 4, 5, 6, 7, 10, 13\}$, pivotal indices

 $q = \{8, 9, 11, 12, 14, 15\}$, non-pivotal indices

 $q \mod (n = 3)$ equivalence classes: [8, 11, 14] and [9, 12, 15]

 $\tilde{q} = \{8, 9\}$, basic non-pivotal indices

 $\mu\text{-basis}$ theorem (HHK 2017):

For a non-zero $\mathbf{a} \in \mathbb{K}[s]^n$

1. A has exactly n - 1 basic non-pivotal columns.

2. The syzygies corresponding to the basic non-pivotal columns of A comprise a μ -basis of syz(a).

 $A_{*8} = -3A_{*1} - 2A_{*2} + 2A_{*3} + 3A_{*4} - 5A_{*5} + 2A_{*6} + 1A_{*7},$ $v_8 = [3, 2, -2, -3, 5, -2, -1, 1, 0, 0, 0, 0, 0, 0, 0]^T \Rightarrow v_8^{\flat} = \begin{bmatrix} 3 - 3s - s^2 \\ 2 + 5s + s^2 \\ -2 - 2s \end{bmatrix}$

 $A_{*9} = -9 A_{*1} - 8 A_{*2} + 7 A_{*3} + 12 A_{*4} - 15 A_{*5} + 5 A_{*6} + 1 A_{*7},$ $v_9 = [9, 8, -7, -12, 15, -5, -1, 0, 1, 0, 0, 0, 0, 0, 0]^T \Rightarrow v_9^{\flat} = \begin{bmatrix} 9 - 12s - s^2 \\ 8 + 15s \\ -7 - 5s + s^2 \end{bmatrix}$ Summary of the HHK μ -basis algorithm

Given $\mathbf{a} \in \mathbb{K}[s]^n$,

- 1. Construct $(2d + 1) \times n(d + 1)$ matrix A.
- 2. Compute "partial" reduced row-echelon E form of A, using a modified Gauss-Jordan elimination: (skip non-basic non-pivotal columns, stop when n - 1 basic non-pivotal columns are identified)
- 3. Read μ basis from basic non-pivotal columns.

Example

$$\mathbf{a} = \begin{bmatrix} 2+s+s^4 & 3+s^2+s^4 & 6+2s^3+s^4 \end{bmatrix}$$

$$1. A = \begin{bmatrix} 236\\100236\\010100236\\002010100236\\111002010100236\\111002010100236\\111002010100\\111002010\\111002\\1111\end{bmatrix}$$

2.
$$E = \begin{bmatrix} 1 & -3 & -9 \\ 1 & -2 & -8 \\ 1 & 3 & 12 & 236 \\ & 1 & -5 & -15 & 10 & 0 & 236 \\ & 1 & 2 & 5 & 0 & 1 & 0 & 0 \\ & & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 \\ & & & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 \\ & & & & & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 1 \\ & & & & & & 1 & 1 & 1 & 0 & 0 & 2 \\ & & & & & & & 1 & 1 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 - 3s - s^2 & 9 - 12s - s^2 \\ 2 + 5s + s^2 & 8 + 15s \\ -2 - 2s & -7 - 5s + s^2 \end{bmatrix}$$

Comparison with Song-Goldman Algorithm

Theoretical complexity and experimental timing:

 $10^{-6} (7.4 d^2 n + 1.2 d^3 + 1.2 n^2)$ $10^{-7} (2.6 dn^5 + 0.6 d^2 n^4)$

μ -basis and gcd(a).

A μ -basis of a is a μ -basis of $\frac{1}{gcd(a)}a$

If the input vector \mathbf{a} is such that $\text{gcd}(\mathbf{a}) \neq 1$

- The output of the HHK algorithm is μ -basis of \mathbf{a} .
- The output of the SG algorithm consists of µ-basis elements multiplied by gcd(a).

$\mu\text{-}\text{basis}$ and minimal bases.

- Recall: a μ -basis $\mathbf{u}_1, \ldots, \mathbf{u}_{n-1}$ is a basis of ker(a), where a is a polynomial vector (or $1 \times n$ -matrix), such that $LV(\mathbf{u}_1), \ldots, LV(\mathbf{u}_{n-1})$ are independent.
- There is a natural generalization to the problem of computing a basis u₁,..., u_{n-m} of ker(a), where a is a polynomial m × n-matrix of rank m, such that LV(u₁),..., LV(u_{n-m}) are independent.
- There is a body of literature on computing such bases, called minimal bases: e.g Beelen (1987), Antoniou, Vardulakis, Vologiannidis (2005), Zhou, Labahn, Storjohann (2012).
- HHK algorithm can be straightforwardly generalized for computing minimal bases. We did not yet compare this generalization with the above work.

With almost no extra cost we can modify HHK algorithm to compute:

- a minimal-degree Bézout vector
- an optimal-degree moving frame

Thank you!