
2017 SIAM Conference on Applied Algebraic Geometry

Atlanta, Georgia

Algorithm for Computing µ-Bases of Univariate Polynomials

Irina Kogan

North Carolina State University

joint work with

Hoon Hong and Zachary Hough

J. of Symbolic Comput., Vol. 8, No 3, (2017), 844 - 874

This project was supported, in part, by NSF grant CCF-1319632.

1



The syzygy module

• a(s) = [a1(s), . . . , an(s)] ∈ K[s]n is a univariate polynomial row vector
a 6= 0 and n > 1 over a field K.

• The syzygy module of a consists of column vectors in K[s]n, which are in
the kernel of a:

syz(a) = {h ∈ K[s]n | ah = 0}.

Notation:

• n is the length of a.

• d = max
i∈{1,...,n}

deg ai is the degree of a.

Remark: We don’t assume that gcd(a) = 1!
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Definition of a µ-basis:

Definition: a µ-basis of syz(a) is set of polynomial vectors u1, . . . , un−1, s. t.:

1. u1, . . . ,un−1 generate syz(a);

2. LV (u1), . . . , LV (un−1) are linearly independent over K, where

for h ∈ K[s]n, such that t = degh, the leading vector

LV (h) = [coeff(h1, t), . . . , coeff(hm, t)]T ∈ Kn.

Example: a =
[
1 + s2 + s4 1 + s3 + s4 1 + s4

]
.

A µ-basis of the syz(a) is comprised by

u1 =

 −s
1

−1 + s

 and u2 =

 1− 2s− 2s2 − s3

2 + 2s+ s2 + s3

−3

 .

• degu1 = 1 and LV (u1) = [−1,0,1]T

• degu2 = 3 and LV (u2) = [−1,1,0]T
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Why are µ-bases nice?

Proposition: For a generating set u1, . . . ,un−1 of syz(a), ordered so that
deg(u1) ≤ · · · ≤ deg(un−1), the following properties are equivalent:

1. [independence of the leading vectors]
LV (u1), . . . , LV (un−1) are independent over K.

2. [optimality of the degrees]
If h1, . . . ,hn−1 is any generating set of syz(a), such that
degh1 ≤ · · · ≤ deghn−1,
then degui ≤ deghi for i = 1, . . . , n− 1.

3. [sum of the degrees]

degu1 + · · ·+ degun−1 = deg a− deg gcd(a).

4. [more...] [see Song and Goldman, 2009]
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Remarks:

• The concept of a µ-basis was first introduced by Cox, Sederberg, Chen
(1998), motivated by the search for new, more efficient methods for solving
implicitization problems for rational curves, and as a further development
of the method of moving lines proposed by Sederberg and Chen (1995).

• µ-basis of syz(a) is not unique, but the degrees of its elements are
canonical. They where denoted by µ1, . . . , µn−1 in Cox, Sederberg, Chen
(1998), which gave rise to the name “µ-basis”.

• One can study the µ-type of a as in Cox and Iarrobino “Strata of rational
space curves.” Comput. Aided Geom. Design, 32:50–68, 2015
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Algorithms to compute µ-bases

n = 3 algorithms:

• Cox, Sederberg and Chen (1998)

– degrees µ1 and µ2 are determined prior to computing of µ-basis

– µ-basis constructed from null vectors of two linear maps
A1 : K3(µ1+1) → Kµ1+d+1 and A2 : K3(µ2+1) → Kµ2+d+1

– It is not clear how to generalize to arbitrary n.

• Zheng and Sederberg (2001), Chen and Wang (2002)
(Buchberger-type reduction)

arbitrary n algorithms:

• Song and Goldman (2009)
(generalization of Chen and Wang to arbitrary n)

• Hong, Hough and IK (2017)
(computing a “partial” reduced row-echelon form of a Sylvester-type
matrix)
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Main ingredients

1. Explicit isomorphism [ : Kn(d+1) → K[s]nd :

Example: n = 3, d = 4

v = [−1,−1,2, 1,−1,0, 1,0,0, 0,0,0, −1,0,1]T ∈ K15

v[ =

 −1
−1
2

+ s

 1
−1
0

+ s2

 1
0
0

+ s3

 0
0
0

+ s4

 −1
0
1


=

 −1 + s+ s2 − s4

−1− s
2 + s4

 .
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Main ingredients (cont)

2. For a =
∑

0≤i≤d
si [ci1, . . . , cin] ∈ K[s]nd we define a Sylvester type matrix:

A =



c01 · · · c0n... · · · ... c01 · · · c0n... · · · ... ... · · · ... . . .
cd1 · · · cdn

... · · · ... . . . c01 · · · c0n
cd1 · · · cdn

. . . ... · · · ...

. . . ... · · · ...
cd1 · · · cdn



There are d+ 1 blocks, thus this is (2d+ 1)× n(d+ 1) matrix over K
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Example

a =
[

2 + s+ s4 3 + s2 + s4 6 + 2s3 + s4
]

= [2 3 6] + [1 0 0] s+ [0 1 0] s2 + [0 0 2] s3 + + [1 1 1] s4

A =



2 3 6
1 0 0 2 3 6
0 1 0 1 0 0 2 3 6
0 0 2 0 1 0 1 0 0 2 3 6
1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0
1 1 1 0 0 2 0 1 0

1 1 1 0 0 2
1 1 1


is (2d+ 1)× n(d+ 1) = 9× 15 matrix over K

10



Key (but simple) observations:

A =



c01 · · · c0n... · · · ... c01 · · · c0n... · · · ... ... · · · ... . . .
cd1 · · · cdn

... · · · ... . . . c01 · · · c0n
cd1 · · · cdn

. . . ... · · · ...

. . . ... · · · ...
cd1 · · · cdn



• v ∈ kerA if and only if v[ ∈ syzd(a).

• LetA∗k be a non-pivotal column: A∗k =
∑

i<k:pivotal
αi A∗i for some αi ∈ K,

then v ∈ Kn(d+1)such it has −αi in the i-th component, 1 in the k-th
component and the rest are zeros, is in the kerA.

• Non-pivotal columns have n-periodic structure:

A∗k =
∑
i<k

αi A∗i ⇒ A∗k+n =
∑
i<k

αi A∗i+n

11



a =
[

2 + s+ s4 3 + s2 + s4 6 + 2s3 + s4
]

A =



2 3 6
1 0 0 2 3 6
0 1 0 1 0 0 2 3 6
0 0 2 0 1 0 1 0 0 2 3 6
1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0
1 1 1 0 0 2 0 1 0

1 1 1 0 0 2
1 1 1


p = {1,2,3,4,5,6,7,10,13}, pivotal indices

q = {8,9,11,12,14,15}, non-pivotal indices

q mod (n = 3) equivalence classes: [8,11,14] and [9,12,15]

q̃ = {8,9}, basic non-pivotal indices
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µ-basis theorem (HHK 2017):

For a non-zero a ∈ K[s]n

1. A has exactly n− 1 basic non-pivotal columns.

2. The syzygies corresponding to the basic non-pivotal columns of A
comprise a µ-basis of syz(a).
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a =
[

2 + s+ s4 3 + s2 + s4 6 + 2s3 + s4
]

A =



2 3 6
1 0 0 2 3 6
0 1 0 1 0 0 2 3 6
0 0 2 0 1 0 1 0 0 2 3 6
1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0
1 1 1 0 0 2 0 1 0

1 1 1 0 0 2
1 1 1


A∗8 = −3A∗1 − 2A∗2 + 2A∗3 + 3A∗4 − 5A∗5 + 2A∗6 + 1A∗7,

v8 = [3,2,−2, −3,5,−2, −1,1,0, 0,0,0, 0,0,0]T ⇒ v[8 =

 3− 3s− s2

2 + 5s+ s2

−2− 2s



A∗9 = −9A∗1 − 8A∗2 + 7A∗3 + 12A∗4 − 15A∗5 + 5A∗6 + 1A∗7,

v9 = [9,8,−7, −12,15,−5, −1,0,1, 0,0,0, 0,0,0]T ⇒ v[9 =
[

9− 12s− s2

8 + 15s
−7− 5s+ s2

]
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Summary of the HHK µ-basis algorithm

Given a ∈ K[s]n,

1. Construct (2d+ 1)× n(d+ 1) matrix A.

2. Compute ”partial” reduced row-echelon E form of A, using a modified
Gauss-Jordan elimination:
(skip non-basic non-pivotal columns, stop when n − 1 basic non-pivotal
columns are identified )

3. Read µ basis from basic non-pivotal columns.
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Example

a =
[

2 + s+ s4 3 + s2 + s4 6 + 2s3 + s4
]

1. A =


2 3 6
1 0 0 2 3 6
0 1 0 1 0 0 2 3 6
0 0 2 0 1 0 1 0 0 2 3 6
1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0
1 1 1 0 0 2 0 1 0

1 1 1 0 0 2
1 1 1



2. E =



1 −3 −9
1 −2 −8

1 2 7
1 3 12 2 3 6

1 −5 −15 1 0 0 2 3 6
1 2 5 0 1 0 1 0 0

1 1 1 0 0 2 0 1 0
1 1 1 0 0 2

1 1 1



M =

 3− 3 s− s2 9− 12 s− s2

2 + 5 s+ s2 8 + 15 s
−2− 2 s −7− 5 s+ s2
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Comparison with Song-Goldman Algorithm

Theoretical complexity and experimental timing:

HHK algorithm:
O(d2n+ d3 + n2)

10−6 (7.4 d2n+1.2 d3 +1.2 n2)

SG algorithm:
O(dn5 + d2n4)

10−7 (2.6 dn5 + 0.6 d2n4)
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HHK (red) and SG (blue) Tradeoff graph
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µ-basis and gcd(a).

A µ-basis of a is a µ-basis of 1
gcd(a) a

If the input vector a is such that gcd(a) 6= 1

• The output of the HHK algorithm is µ-basis of a.

• The output of the SG algorithm consists of µ-basis elements multiplied by
gcd(a).
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µ-basis and minimal bases.

• Recall: a µ-basis u1, . . . ,un−1 is a basis of ker(a), where a is a
polynomial vector (or 1 × n-matrix), such that LV (u1), . . . , LV (un−1)

are independent.

• There is a natural generalization to the problem of computing a basis
u1, . . . ,un−m of ker(a), where a is a polynomial m × n-matrix of rank
m, such that LV (u1), . . . , LV (un−m) are independent.

• There is a body of literature on computing such bases, called minimal
bases: e.g Beelen (1987), Antoniou, Vardulakis, Vologiannidis (2005),
Zhou, Labahn, Storjohann (2012).

• HHK algorithm can be straightforwardly generalized for computing minimal
bases. We did not yet compare this generalization with the above work.
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With almost no extra cost we can modify HHK algorithm to
compute:

• a minimal-degree Bézout vector

• an optimal-degree moving frame
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Thank you!
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