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Problem and motivation

Problem and motivation:

Given: A a subset S ⊂ Rn and a subset s ⊂ Rn−1

(n ≥ 3) and a class of admissible maps from
Rn to Rn−1;

Decide: whether s is the image of S under a projection
from this class.

Motivation: Establishing a correspondence between objects
in 3D and their images, when camera
parameters and position are unknown.

Focus: I n = 3;
I central and parallel projections from R3 to

a plane in R3.
I objects are curves in R3 and R2

I finite sets of points will be also discussed
Generalization: to n > 3 is theoretically straightforward

but computationally more challenging
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Pinhole camera:

Let (z1, z2, z3) be the standard coordinates in R3 and
assume:

I camera is located at (0, 0, 0);

I image plane passes through (0, 0, 1) and is
perpendicular to z3-axis;

I coordinates on the image plane correspond to (z1, z2).

A point (z1, z2, z3) with z3 6= 0 is projected to the point

(x , y) =

(
z1

z3
,
z2

z3

)
.
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Cameras

General camera models:
Degrees of freedom:

I location of the projection center (3 degrees of freedom);

I the position of the image plane (3 degrees of freedom)

I choice of, in general, non-orthogonal, coordinates on
the image plane (5 degrees of freedom, since the overall
scale is absorbed by the choice of the distance between
the image plane and the camera center).

⇓

11 real parameters [pij ]
i=1...3
j=1...4 (equivalent under scaling

pij → λpij , λ 6= 0.)

x =
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,

y =
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34
.
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Homogeneous coordinates:

I [ ] around matrices (and, in particular, vectors) denotes
an equivalence class with respect to multiplication of a
matrix by a nonzero scalar.

I For matrices A and B of appropriate sizes
[A] [B] := [A B].

I Rn ↪→ Pn: (z1, . . . , zn)→ [z1, . . . , zn, 1].

I points at infinity are [z1, . . . , zn, 0], where
∃i = 1, . . . , n : zi 6= 0.
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Camera models in homogeneous coordinates:

 x
y
1

 =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




z1

z2

z3

1


I P is 3× 4 matrix of rank 3

I ∃ non-zero point (z0
1 , z

0
2 , z

0
3 , z

0
4 ) ∈ R4 s. t.

P (z0
1 , z

0
2 , z

0
3 , z

0
4 )tr = (0, 0, 0)tr .

I [z0
1 , z

0
2 , z

0
3 , z

0
4 ] ∈ P3 is the center of projection.
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Types of projections:

Projection (camera) is called

finite (FP) if its center is not at ∞ ⇔ left 3× 3 submatrix
of P is non-singular (central projection with 11
degrees of freedom);

infinite center is at ∞;

affine (AP) center is at ∞ and the preimage of the line at
∞ in P2 is the plane at infinity in P3 ⇔ the
last row of P is [0, 0, 0, λ], λ 6= 0 (parallel
projection with 8 degrees of freedom).
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Standard projections:

I Standard finite projection (simple pinhole camera)

P0
f :=

 1 0 0 0
0 1 0 0
0 0 1 0


I Standard affine projection (orthogonal projection on

z1z2-plane)

P0
a :=

 1 0 0 0
0 1 0 0
0 0 0 1

 .
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Problem again

Projection problem for curves

Set up and notation:

I γ : Iγ → Rn, where Iγ ⊂ R is an interval, be a smooth
parametric curve.

I Cγ := {γ(t)|t ∈ Iγ} its image in Rn.

I [Cγ ] is the corresponding set of points in Pn

(represented in homogenous coordinates as column
(n + 1)-vectors)

Problem:

given Γ: IΓ → R3 and γ : Iγ → R2

decide if there exists a finite projection [P] ∈ FP (or
an affine projection [P] ∈ AP) such that

[Cγ ] = [P] [CΓ]
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Problem again

Example

Γ(s) = (z1(s), z2(s), z3(s)) =
(
s3, s2, s

)
, s ∈ R

can be projected to

I γ1(t) =
(
t2, t

)
, t ∈ R by the standard finite projection

P0
f :=

 1 0 0 0
0 1 0 0
0 0 1 0


I and to γ2(t) =

(
t3

t+1 ,
t2

t+1

)
, t ∈ R by finite projection

P :=

 1 0 0 0
0 1 0 0
0 0 1 1

 .
I but not to γ3(t) =

(
t, t5

)
, t ∈ R.
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Groups:

I projective: PGL(n + 1) = {[B]|B ∈ GL(n + 1)}
I affine A(n) = {[B]|B ∈ GL(n + 1), the last row of B is

(0, . . . , 0, 1)}.
I special affine SA(n) = {[B]|B ∈ SL(n + 1), the last

row of B is (0, . . . , 0, 1)}.

PGL(n + 1) acts on Pn by
([B], [z1, . . . , zn, z0]tr )→ [B] [z1, . . . , zn, z0]tr .

⇓

PGL(n + 1) acts on Rn by linear fraction transformations.
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Action on cameras:

I PGL(3)×A(3) acts on the set FP of finite projections.

I A(2)×A(3) acts on the set AP of affine projections.

([A], [B]), [P])→ [A] [P] [B−1].

Both actions are transitive ⇒ FP and AP are homogeneous
spaces.
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Proof of the transitivity of
PGL(3)×A(3)-action on FP :

I ∀[P] ∈ FP: P is 3× 4 matrix whose left 3× 3
submatrix is non-singular. ⇒ ∃ c1, c2, c3 ∈ R s. t.
p∗4 = c1 p∗2 + c2 p∗2 + c3 p∗3, where p∗j is the j-th
column of P.

I Define A to be the left 3× 3 submatrix of P and

B :=


1 0 0 −c1

0 1 0 −c2

0 0 1 −c3

0 0 0 1

 .

I Observe that [A] ∈ PGL(3), [B] ∈ A(3) and

P = A P0
f B−1, where P0

f :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
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9-dim’l. stabilizer of P0
f :

H0
f =

{(
[A],

[
A 0tr

0 1

])}
, where A ∈ GL(3).
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Projection criteria

Corollary. Projection criterion for central
projections (finite cameras):

A spatial curve Γ(s) =
(
z1(s), z2(s), z3(s)

)
, s ∈ IΓ projects

onto a planar curve γ(t) =
(
x(t), y(t)

)
, t ∈ Iγ , by a central

projection
m

∃ c1, c2, c3 ∈ R such that planar curves γ(t) and

εc1,c2,c3(s) =

(
z1(s) + c1

z3(s) + c3
,

z2(s) + c2

z3(s) + c3

)
are PGL(3)-equivalent:

∃[A] ∈ PGL(3), s. t.Cγ = [A] · Cεc1,c2,c3
.
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Projection criteria

Projection criterion for parallel projections (affine
cameras):

A spatial curve Γ(s) =
(
z1(s), z2(s), z3(s)

)
, s ∈ IΓ projects

onto a planar curve γ(t) =
(
x(t), y(t)

)
, t ∈ Iγ , by a prallel

projection
m

∃ b, c , f ∈ R such that planar curves γ(t) is A(2)-equivalent
to one of the following curves:

α(s) = (z2(s), z3(s)
)
,

βb(s) =
(
z1(s) + b z2(s), z3(s)

)
,

δcf (s) =
(
z1(s) + c z3(s), z2(s) + f z3(s)

)
.
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Group equivalence

A group-equivalence problem for curves with free
parameters!

A solutions based on differential signature.
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Group equivalence

Differential invariants for planar curves
γ(t) = (x(t), y(t)):

I G is an r -dim’l Lie group acting on the plane.

I For almost all actions ∃ two differential invariants JG of
KG differential order r − 1 and r respectively.

I Euclidean: κ = ÿ ẋ−ẍ ẏ√
ẋ2+ẏ2

and κs , where

ds =
√

ẋ2 + ẏ2 dt

I equi-affine (SA(3)): µ = 3κ (κss+3κ3)−5κ2
s

9κ8/3 and µα,

where dα = κ1/3ds.

I projective (PGL(3)): η = 6µαααµα−7µ2
αα−9µ2

α µ

6µ
8/3
α

and µρ,

where dρ = µ
1/3
α dα.

I Affine rational invariants: Ja = (µα)2

µ3 , Ka = µαα
3µ2 .

I Projective rational invariants: Jp = η3, Kp = ηρ.
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Differential signature for planar curves:

I Curves for which JG or KG are undefined are called
G -exceptional.

I Definition: the G -signature of a non-exceptional curve
γ : Iγ → R2 is a planar parametric curve
Sγ = {

(
JG |γ(t),KG |γ(t)

)
| t ∈ Iγ}.

I Theorem: non-exceptional curves α and β are
G -equivalent

⇓ ⇑ under certain conditions

Sα = Sβ
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Algorithm for solving projection problems for
curves:

I INPUT: a planar curve γ(t) = (x(t), y(t)), t ∈ R, and
a spatial curve Γ(t) =

(
z1(s), z2(s), z3(s)

)
, s ∈ R, with

rational parameterizations.

I OUTPUT: YES or NO answer to the question ”Is
necessary condition for existence of finite or affine
projection [P] such that [Cγ ] = [P][CΓ] is satisfied?”.
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Outline for central projections:

1. if γ is PGL(3)-exceptional (straight line or conic) then
follow a special procedure, else

2. for arbitrary real c1, c2, c3 define a curve

εc1,c2,c3(s) =
(

z1(s)+c1

z3(s)+c3
, z2(s)+c2

z3(s)+c3

)
;

3. evaluate PGL(3)-invariants Jp = η3, Kp = ηρ on γ(t) –
obtain two rational functions of t, Jp|γ(t) and Kp|γ(t);

4. evaluate the same PGL(3)-invariants on εc1,c2,c3(s) –
obtain two rational functions Jp|ε(c1, c2, c3, s) and
Kp|ε(c1, c2, c3, s) of c1, c2, c3 and s;

5. if ∃ c1, c2, c3 ∈ R s. t. the signatures
Sγ = {

(
Jp|γ(t),Kp|γ(t)

)
| t ∈ R} and

Sε = {
(
Jp|ε(s),Kp|ε(s)

)
| s ∈ R} coincide, then

OUTPUT: YES, else OUTPUT: NO.
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Computational challenges:

I Elimination of variables.

I Polynomial solving over real numbers.
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Previous works:

I Projection problem for curves and surfaces for finite
cameras by Feldmar, Ayache, and Betting, (1995)

I internal camera parameters are known: central
projections with 6 degrees of freedom;

I additional assumption on the image curves are made.

I Projection problem for finite ordered sets of points for
parallel projections by Arnold, Stiller, and Sturtz (2006,
2007)

I define an algebraic variety that characterizes pairs of
sets related by an affine projection;

I define object-image distance.
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Advantages

Advantages of current approach:

Universality of the framework

I applies to various types of projections and various
objects.

I generalizes to higher dimensions.
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Finite sets of points

Central projections for finite sets of points:

Projection criterion:
A given ordered set Z = (z1, . . . , zm) of m points in R3 with
coordinates zi = (z i

1, z
i
2, z

i
3), i = 1 . . .m, projects onto a

given ordered set X = (x1, . . . , xm) of m points in R2 with
coordinates xi = (x i , y i ) if and only if there exist
c1, c2, c3 ∈ R and [A] ∈ PGL(3) such that

[x i , y i , 1]tr = [A][z i
1 + c1, z i

2 + c2, z i
3 + c3]tr for i = 1 . . .m.

Use joint algebraic invariants instead of differential invariants
to solve PGL(3)-equivalence problem on the plane.
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Finite sets of points

Continuous vs. discrete:

Figure: Projection problem for curves vs. projection problems for
finite ordered sets of points

If Z = (z1, . . . , zm) is a discrete sampling of a curve Γ and
X = (x1, . . . , xm) is a discrete sampling of γ, these sets
might not be in a correspondence under a projection even
when the curves are related by a projection.
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Further projects

Further projects:

I Solutions of the projection problem for curves given by
a finite sample of points.

I Object-image distance for curves.
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