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Sévennec’s problem

Jacobian and Hessian problems

The talk is based on:

1. Jenssen, H. K., Kogan, I. A., Conservation laws with
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Jacobian and Hessian problems

Problem 1: Jacobians with prescribed eigenfields

Given: (i) An affine coordinates u = (u1, . . . , un)
(∇ ∂

∂ui

∂
∂uj

= 0) on an open, smoothly

contractible to a point Ω ⊂ Rn;
(ii) A frame R = (r1, . . . , rn) on Ω.

Find all: vector value maps (f 1, . . . , f n) : Ω→ Rn, s. t.
r1|ū, . . . , rn|ū are right eigenvectors of the
Jacobian matrix Duf (ū), ∀ū ∈ Ω;

Equivalently, find all maps (λ1, . . . , λn) : Ω→ Rn, s.t.

J(u) = R(u) Λ(u) L(u) is a Jacobian matrix,

where matrix R = (R j
i ) is defined by ri =

n∑
i=1

R j
i (u)

∂

∂uj
,

L := R−1 and Λ(u) := diag[λ1(u), . . . , λn(u)]
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Problem 2: Hessian inner-products with prescribed
orthogonal frame

Given: (i) An affine coordinates u = (u1, . . . , un)
(∇ ∂

∂ui

∂
∂uj

= 0) on an open, smoothly

contractible to a point Ω ⊂ Rn;
(ii) A frame R = (r1, . . . , rn) on Ω.

Find all: functions η : Ω→ R, s. t. frame R is
orthogonal with respect to the inner product
defined by the Hessian matrix D2

uη.

Equivalently, find all maps (β1, . . . , βn) : Ω→ Rn, s.t.

H(u) = LT (u)B(u) L(u) is a Jacobian matrix,

where matrix R = (R j
i ) is defined by ri =

n∑
i=1

R j
i (u)

∂

∂uj
,

L := R−1 and B(u) := diag[β1(u), . . . , βn(u)]
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In Summary:

Given: a local frame ri =
n∑

i=1

R j
i (u)

∂

∂uj
, i = 1, . . . , n on Ω.

Let: R(u) := [R1(u) | · · · |Rn(u)], L(u) := R(u)−1

Jacobian problem Find all possible Λ = diag[λ1, . . . , λn], s.t.

J(u) = L−1(u) Λ(u) L(u) is a Jacobian matrix.

λi is an eignvalue of J with eigenvector-field ri .

f = (f 1, . . . , f n) such as J = Duf determined from J up to
addition of a constant vector valued function

Hessian problem Find all possible B = diag[β1, . . . , βn] s.t.

H(u) = LT (u)B(u) L(u) is a Jacobian matrix

βi is the “length” of ri relative to the inner product H.

A symmetric Jacobian H is a Hessian for some function η,
determined from H up to an affine function
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Scaling invariance
What happens if we replace R = (r1, . . . , rn) with
R̃ = (α1 r1, . . . , αn rn), where αi : Ω→ R are non zero?

R(u) := [R1(u) | · · · |Rn(u)] is component matrix of R,
L(u) := R(u)−1

R̃(u) = RA is component matrix of R̃,
L̃(u) := R̃(u)−1 = A−1L(u), where A = diag[αi , . . . , αn].

Jacobian problem: For all Λ = diag[λ1, . . . , λn],

J(u) = R(u) Λ(u) L(u) = R̃(u) Λ(u) L̃(u).

Λ solves the Jacobian problem for both R and R̃.

Hessian problem: For all B = diag[β1, . . . , βn],

H(u) = LT (u)B(u) L(u) = L̃T (u) B̃(u) L̃(u),

B̃ := diag[α2
1 β

1, . . . , α2
nβ

n] solves the Hessian problem ⇔ B
solves it.

R can be prescribed up to a scaling (integral curves of R)
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How many solutions?
A request for matrix J (or H) to be a Jacobian leads to an
(overdetermined for n > 2) system of equations on λ’s (or
β’s).

How many free constants and functions determine a
general solution λ1(u), . . . , λn(u)?

How many free constants and functions determine a
general solution β1(u), . . . , βn(u)?

Goal: classify all possible scenarios depending on the
properties of the frame R.
Results:

n = 1, 2 known

n = 3 complete classification (Jenssen and K)

n > 3 few known and few new results.
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Hyperbolic conservation laws

Conservative systems

ut + f (u)x = 0 . (1)

I one space-variable: x ∈ R; one time-variable: t ∈ R.

I u(x , t) ∈ Ω ⊂ Rn (n equations on n unknown state
functions).

I nonlinear flux f (u) : Ω→ Rn.

LHS(1) = ut + (Duf ) ux

(1) is hyperbolic if Df (u) is diagonalizable over reals ∀u ∈ Ω.
(1) is strictly hyperbolic if ∀u ∈ Ω eigenvalues of Df (u) are
real and distinct.
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Example: the Euler system for 1-dim. compressible
flow

I Euler system in thermodynamic variables

vt − ux = 0

ut + px = 0

St = 0 .

v = 1
ρ is volume per unit mass, u is velocity, S is

entropy per unit mass, pressure p(v ,S) > 0 is a given
function of v and S , s.t pv < 0.

I Ut + f (U)x = 0 ,where U = (v , u, S) and
f (U) = (−u, p(v , S), 0).

Jenssen and Kogan (Penn and NC State) Geometry of hyperbolic conservative systems June 13, 2011 9 / 46



Geometry of
hyperbolic

conservative
systems

Jenssen and Kogan

Jacobian and
Hessian problems

Hyperbolic
conservation laws

The λ-system

Rich frame ∀n

λ-system for n = 3

The β-system

Rich frame

β-system for n = 3

Examples

Euler system

“Blowup” example

Rich orthogonal frame

Appendix

Jacobian structures

Hessian structures
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Hyperbolic conservation laws

Wave curves
Self-similar solutions of ut + f (u)x = 0 (*)

Smooth: (rarefaction curves)

u(x , t) = w
(x

t

)
= w(ξ), where ξ =

x

t
⇓ (∗)

[Duf (w(ξ))] ẇ(ξ) = ξẇ(ξ), where ˙ =
d

dξ

⇓

ẇ(ξ) is an eigenvector of Duf with the eigenvalue ξ.
⇓

through ū ∈ Ω, ∃ n-solutions wi (ξ) which are eigencurves of
ri and ξ = λi (wi ).

Discontinuous: (shock curves) are defined by Hugoniot locus
{ u ∈ Ω | ∃ s ∈ R : f (u)− f (ū) = s · (u − ū) }.
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Hyperbolic conservation laws

Cauchy problem:

ut + f (u)x = 0, u(x , 0) = u0(x).

In general, a solution will develop discontinuity even for
smooth initial data — weak solutions.
Non uniqueness — admissibility criterion based on entropy
inequality.

Riemann problem:

u0(x) =

{
u− , x < 0
u+ , x > 0 .

Lax (1957) under certain condition on f and when u− and
u+ are close, solutions to Riemann problems are determined
by wave curves.
Glimm (1965) for u0 with small total variation, solutions to
Cauchy problems is determined by solutions of Riemann
problems.
Large initial data ???
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Hyperbolic conservation laws

Extensions and entropies: Assume that ∃ functions

q : Ω→ R and η : Ω→ R, s.t. grad q = grad η(Duf ) , then

multiplication of ut + f (u)x = 0 by (grad η) from the left

(assuming that u is smooth) leads to a companion
conservation law:

η(u)t + q(u)x = 0

η is called an extension of conservative system.

Proposition: η is an extension iff:

for each pair 1 ≤ i 6= j ≤ n : λj = λi or RT
i

(
D2
uη
)
Rj = 0 .

An extension η is called an entropy if D2
uη is positive

semidefinite and is called strict entropy if D2
uη is positive

definite.
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Hyperbolic conservation laws

Admissibility criterion:
A weak solution of ut + f (u)x = 0 is admissible if it is a limit
of smooth solutions

uεt + f (uε)x = εuεxx , as ε ↓ 0.

If η is an entropy with flux q, then:

η(uε)t + q(uε)x ≤ εη(uε)xx (ε > 0)

A weak solution of ut + f (u)x = 0 is admissible if it satisfies
the entropy inequality

η(u)t + q(u)x ≤ 0 (distributional sense)
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The λ-system

Solution of the Jacobian problem:

R(u) Λ(u) L(u) is a Jacobian

... and the λ-system.
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The λ-system

Trivial solutions of the Jacobian problem
I ∀R: ∃ one-parameter family of trivial solutions
λ1(u) = · · · = λn(u) ≡ λ̄, where λ̄ ∈ R:

R(u) Λ̄ L(u) = Λ̄ = Df for f = λ̄u + ū, ū ∈ Rn.

I ∃R with only trivial solutions. Example:

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [−u2, u1, 1]T .

I λ1(u) = · · · = λn(u) is a solution

m

λ1(u) = · · · = λn(u) ≡ λ̄ for some λ̄ ∈ R.
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The λ-system

Direct Formulation
I A matrix J(u) = (J i

j (u)) is a Jacobian

∂J i
j (u)

∂uk
=
∂J i

k(u)

∂uj
for all i , j , k = 1, . . . , n with j < k ,

I J(u) = R(u)Λ(u)L(u) is a Jacobian

m

n∑
m=1

[
C i
mj∂kλ

m − C i
mk∂jλ

m + λm
(
∂kC i

mj − ∂jC i
mk

)]
= 0 ,

i , j , k = 1, . . . , n with j < k ,

where C i
mj(u) := R i

m(u)Lm
j (u), ∂i = ∂

∂ui

I A linear, variable coefficient system of n2(n−1)
2 first order

PDEs for n unknowns λ1, . . . , λn.
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The λ-system

Formulation in terms of differential forms

J(u) is a Jacobian matrix ⇐⇒ dJ(u) ∧ du = 0 ,

where du := (du1, . . . , dun)T .

J(u) = R(u) Λ(u) L(u) is a Jacobian

m

{L(dR)Λ + dΛ− ΛL(dR)} ∧ Ldu = 0 .

(LHS is an n-vector of differential two-forms)
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The λ-system

Rewriting in terms of the given frame:
I ri (u) :=

∑n
m=1 Rm

i (u) ∂∂um is given frame
I `i (u) :=

∑n
m=1 Li

m(u)dum is the dual coframe.
I ` := (`1, . . . , `n)T

I [ri , rj ] =
n∑

k=1

ck
ij rk , d`k = −

∑
i<j

ck
ij `

i ∧ `j .

I Γk
ij := Lk(DRj)Ri is the Christoffel symbols of the

connection ∇ ∂

∂ui

∂
∂uj

= 0 computed relative to the frame

{r1, . . . , rn} i.e. ∇ri rj =
n∑

k=1

Γk
ij rk .

I Matrix µ := LdR of connection forms: µkj =
∑n

i=1 Γk
ij`

i .(
L(dR)Λ + dΛ− ΛL(dR)

)
∧ Ldu = 0

m(
µΛ + dΛ− Λµ

)
∧ ` = 0 .

m
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The λ-system

Differential/Algebraic system (the λ-system)[(
µΛ + dΛ− Λµ

)
∧ `
]

(ri , rj) = 0 for 1 ≤ i < j ≤ n

m

λ(R)-system: n(n − 1) linear, homogeneous, 1st order PDEs

and n(n−1)(n−2)
2 algebraic equations.

ri (λ
j) = Γj

ji (λ
i − λj) i 6= j , (λ(R)-diff)

Γk
ji (λi − λk) = Γk

ij (λj − λk) i < j , i 6= k , j 6= k (λ(R)-alg)

n = 1 – λ(R) is empty
n = 2 – λ(R)-alg is empty

In different contexts the λ-system appeared in Sévannec
(1994), Tsarëv (1985)
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The λ-system

Symmetry and flatness

d` = −µ∧` (Symmetry), dµ = −µ∧µ (Flatness).

m

c i
km = Γi

km − Γi
mk (Symmetry)

and

rm
(
Γj
ki

)
− rk

(
Γj
mi

)
=

n∑
s=1

(
Γj
ksΓs

mi − Γj
msΓs

ki − cs
kmΓj

si

)
(Flatness).
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The λ-system

The rank of the algebraic part:

Γk
ji (λi −λk) = Γk

ij (λj −λk), i < j , i 6= k , j 6= k . (λ(R)-alg)

Observation: 0 ≤ rank(λ(R)-alg) ≤ (n − 1).

Extreme cases:

rank(λ(R)-alg) = (n − 1) ⇒ λ1(u) = · · · = λn(u) ≡ λ̄ ∈ R

only trivial solutions

rank(λ(R)-alg) = 0 ⇔ Γk
ji = 0, ∀i , j , k distinct ⇒ ck

ji = 0

∀i , j , k distinct ⇔ [ri , rj ] ∈ span{ri , rj} (rich frame) .

I only trivial solutions 6⇒ rank(λ(R)-alg) = n − 1 .
I R is rich 6⇒ rank(λ(R)-alg) = 0 .
I we will show:
R is rich and admits strictly hyperbolic conservative systems
⇒ rank(λ(R)-alg) = 0 .
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The λ-system Rich frame ∀n

Rich frame
I Definition A frame r1, . . . , rn is rich if each pair of

vector-fields is in involution, i. e. ∀1 ≤ i , j ≤ n:

[ri , rj ] = c i
ij ri + c j

ij rj ⇔ ck
ij = 0 k 6= i , k 6= j .

⇓
I ∃ smooth functions αi : Ω→ R, i = 1, . . . , n such that

r̃1 := α1r1, . . . , r̃n := αnrn commute.
⇓

I ∃ a change of coordinates

(w 1(u), . . . ,wn(u)) = ρ(u)

s.t. r̃i = ∂
∂w i , i = 1, . . . , n.

(w 1(u), . . . ,wn(u)) are called Riemann coordinates.
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Sévennec’s problem

The λ-system Rich frame ∀n

λ-system in Riemann coordinates
(w 1(u), . . . ,wn(u)) = ρ(u)

∂iλ
j(w) = Γj

ji (w) (λi (w)− λj(w)) for i 6= j ,

where ∂i = ∂
∂w i

Γk
ij(w) (λj(w)− λi (w)) = 0 for i < j , k 6= i , k 6= j

I ∀ distinct i , j , k : Γk
ij = 0 ⇒ algebraic part is empty

I ∃ distinct i , j , k s.t. Γk
ij 6= 0 ⇒ multiplicity

conditions on eigenvalues are implied by the system.
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Sévennec’s problem

The λ-system Rich frame ∀n

Flatness and symmetries in Riemann coordinates

Γi
km(w) = Γi

mk(w) (Symmetry)

∂m
(
Γj
ki

)
− ∂k

(
Γj
mi

)
=

n∑
s=1

(
Γj
ks Γs

mi − Γj
ms Γs

ki

)
(Flatness).
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The λ-system Rich frame ∀n

Rich frame with empty λ(R)-alg

∂iλ
j = Γj

ji (λ
i − λj) for 1 ≤ i 6= j ≤ n, ∂i :=

∂

∂wi
.

I Compatibility conditions ∂k∂mλ
j = ∂m∂kλ

j , where the
first derivatives ∂iλ

j , i = 1, . . . , n are given by the
equations, are met due to the flatness of the connection.

I Darboux theorem ⇒ general solution depends on n
functions of one variable φi (w i ), i = 1, . . . , n s.t. for
w̄ ∈ Ω

λi (w̄ 1, . . . , w̄ i−1,w i , w̄ i+1, . . . , w̄n) = φi (w i ).

I all n = 2 frames belong to this case.

I rich orthogonal frames belong to this case.
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The λ-system Rich frame ∀n

Example: rich orthogonal frame (cylindrical
coordinates)

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [0, 0, 1]T .

Riemann coordinates: (in the first octant):

w 1 = 1
2 ln

[
(u1)2 +(u2)2

]
, w 2 = arctan

(
u2

u1

)
, w 3 = u3 .

λ1 = ψ1(w 1), λ2 = e−w
1
∫ ew

1

∗
ψ1(ln(τ2)) dτ + e−w

1
ψ2(w 2),

λ3 = ψ3(w 3).
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The λ-system Rich frame ∀n

Rich system with non-trivial algebraic constraints

∂iλ
j = Γj

ji (λ
i − λj) for 1 ≤ i 6= j ≤ n, ∂i :=

∂

∂wi
.

Γk
ij(λ

j − λi ) = 0 for 1 ≤ k 6= i < j 6= k ≤ n.

I ∃ distinct i , j , k s.t. Γk
ij 6= 0

I multiplicity conditions on eigenvalues are implied by the
algebro-differential system (no strictly hyperbolic
conservation laws in this case).

I Darboux theorem ⇒ general solution depends on
s0 constants and s1 functions of one variable, where

I s0 is the number of distinct eigenvalues of multiplicity
> 1,

I s1 is the number of eigenvalues of multiplicity 1.
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Sévennec’s problem

The λ-system λ-system for n = 3

λ(R)-system for n = 3

I. rank(λ(R)-alg) = 0 ⇒ R is rich; a general solution of
λ(R) depends on 3 functions of 1 variable; ∃ strictly
hyperbolic conservative system with eigenframe R.

II. rank(λ(R)-alg) = 1 (a single algebraic constraint):
IIa. All three λi appear in the algebraic constraint ⇒ λ(R)

can be analyzed by Fronebious theorem; the solution of
the λ-system is either trivial or depends on 2 arbitrary
constants; In the latter case, ∃ strictly hyperbolic
conservative system with eigenframe R; @ rich systems
in class IIa.

IIb. Exactly two λi appear in the algebraic constraint ⇒ two
λi coincide; λ(R) can be analyzed by Cartan-Kähler
theorem; the general solution is either trivial or depends
on 1 arbitrary function of 1 variables and 1 constant; @
strictly hyperbolic conservative system with eigenframe
R; but ∃ rich systems, in class IIb.

III. rank(λ(R)-alg) = 2 ⇒ only trivial solutions
λ1(u) = λ2(u) = λ3(u) = λ̄ ∈ R.
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Sévennec’s problem

The β-system

Solution of the Hessian problem

LT (u)B(u) L(u) is a Jacobian

... and the β-system.
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Sévennec’s problem

The β-system

Trivial solutions of the Hessian problem
I ∀R: ∃ a trivial solutions β1(u) = · · · = βn(u) ≡ 0

(0) = D2
uη for η(u) = a · u + b, a ∈ Rn, b ∈ R.

I ∃R with only trivial solutions. Example:

R1 = [u1, −u2, 0]T , R2 = [−u1, u2, 1]T , R3 = [1, 1, 1]T .

I λ(R) has non trivial solutions (class IIa)

λ1 = λ2 = C , λ3 = (u1 + u2) F (u1 u2)
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The β-system

The β-system

LT (u)B(u) L(u) is a Jacobian

m

β(R)-system: n(n − 1) linear, homogeneous, 1st order PDEs

and n(n−1)(n−2)
2 algebraic equations.

ri (β
j) = βj (Γj

ij + c j
ij)− βi Γi

jj i 6= j , β(R)-diff

βk ck
ij + βjΓj

ik − β
i Γi

jk = 0 i < j , i 6= k , j 6= k β(R)-alg

n = 1 – β(R) is empty
n = 2 – β(R)-alg is empty

In a different context the β-system appeared in Conlon and
Liu (1981)

Jenssen and Kogan (Penn and NC State) Geometry of hyperbolic conservative systems June 13, 2011 31 / 46



Geometry of
hyperbolic

conservative
systems

Jenssen and Kogan

Jacobian and
Hessian problems

Hyperbolic
conservation laws

The λ-system

Rich frame ∀n

λ-system for n = 3

The β-system

Rich frame

β-system for n = 3

Examples

Euler system

“Blowup” example

Rich orthogonal frame

Appendix

Jacobian structures

Hessian structures
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The β-system

The rank of algebraic part:

βk ck
ij + βjΓj

ik − β
i Γi

jk = 0, i < j , i 6= k , j 6= k . (β(R)-alg)

I rank(β(R)-alg) = 0 ⇔ Γk
ji = 0, ∀i , j , k distinct ⇔

rank(λ(R)-alg) = 0⇒ ck
ji = 0 ∀i , j , k distinct ⇔

[ri , rj ] ∈ span{ri , rj} (rich frame) .

I rank(β(R)-alg) = rank(λ(R)-alg) for n ≤ 3.

I in general rank(β(R)-alg) 6= rank(λ(R)-alg) for n > 3
(∃ (n = 4)- example).
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The β-system Rich frame

Rich frame: β-system in Riemann coordinates

(w 1(u), . . . ,wn(u)) = ρ(u)

∂iβ
j = Γj

ji β
j − Γi

jj β
i for i 6= j ,

(
∂i = ∂

∂w i

)
Γj
ikβ

j = Γi
jkβ

i for i < j , k 6= i , k 6= j ,

Case: rank(β(R)-alg) = 0 : ∀ distinct i , j , k : Γk
ij = 0 ⇔

no algebraic constraints ⇒ a differential system of Darboux
type ⇒ general solution depends on n functions of one
variable φi (w i ), i = 1, . . . , n s.t. for w̄ ∈ Ω

βi (w̄ 1, . . . , w̄ i−1,w i , w̄ i+1, . . . , w̄n) = φi (w i ).
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The β-system β-system for n = 3

β(R)-system for n = 3

0 ≤ rank(β(R)-alg) = rank(λ(R)-alg) ≤ 2.

I. rank(β(R)-alg) = 0 ⇒ R is rich; a general solution of
β(R) depends on 3 functions of 1 variable; ∃ hyperbolic
conservative system with eigenframe R, each of them
posses strict entropies.

II. rank(β(R)-alg) = 1 (a single algebraic constraint):
classification on the next page

III. rank(β(R)-alg) = 2 ⇒ only trivial solutions of λ(R):
λ1(u) = λ2(u) = λ3(u) = λ̄ ∈ R with the flux
f = λ̄u + ū, ū ∈ Rn. The size of the solution of
β(R)-system may vary, but any function η is an
extension because the first condition is satisfied:

∀i 6= j : λj = λi or RT
i

(
D2
uη
)
Rj = 0 .
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The β-system β-system for n = 3

Solutions for β(R)-system when n = 3 and
rank(β(R)-alg) = 1.

(1) Only the trivial solution: β1 = β2 = β3 ≡ 0 (R may be
rich)

(2) Exactly two βi are zero and the third depends on 1
arbitrary function of one variable. (R may be rich)

(3) Exactly one βi is zero and the other two βi depend on

(3a) 2 arbitrary functions of one variable. (R may be rich)
(3b) 1 common arbitrary constant.

(4) There are non-degenrate solutions (all βi are non-zero)
which depends on

(4a) 1 arbitrary function of one variable and 1 arbitrary
constant.

(4b) 2 arbitrary constants.
(4c) 1 arbitrary constant.
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Sévennec’s problem

Examples Euler system

The Euler system for 1-dim. compressible flow
I Euler system in thermodynamic variables

vt − ux = 0

ut + px = 0

St = 0 .

v = 1
ρ is volume per unit mass, u is velocity, S is

entropy per unit mass, p(v ,S) > 0 is pressure as a

given function of v and S , s.t pv < 0 .

I Ut + f (U)x = 0 ,where U = (v , u, S) and
f (U) = (−u, p(v , S), 0).

I eigenvalues of Df are
λ1 = −

√
−pv , λ2 ≡ 0 , λ3 =

√
−pv .

I eigenvectors of Df are R1 = [ 1,
√
−pv , 0 ]T ,

R2 = [−pS , 0, pv ]T , R3 = [ 1, −
√
−pv , 0 ]T
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Examples Euler system

Inverse problem:
I For a given pressure function p = p(v ,S) > 0, with

pv < 0 define a frame R: R1 = [ 1,
√
−pv , 0 ]T ,

R2 = [−pS , 0, pv ]T , R3 = [ 1, −
√
−pv , 0 ]T

I determine the class of conservative systems with
eigenfields R by solving the λ-system for λ1, λ2, λ3.

I Observation: frame is rich ⇔(pS
pv

)
v
≡ 0⇔ p(v ,S) = Π(v + F (S)).
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Examples Euler system

Solution of the λ(R)-system:
in the non-rich case:

I λ(R)-alg consists of:

pv
4

(pS
pv

)
v

(λ1 + λ3 − 2λ2) = 0⇔ λ2 = 1
2 (λ1 + λ3)

that involves all three λ’s (case IIa) ⇒ the general
solution depends on two constants.

I from the differential part of λ-system we obtain:

λ1 = C1−C2
√
−pv , λ2 ≡ C1 , λ3 = C1 + C2

√
−pv .

in the rich case:

I λ(R) is empty ⇒ solution depends on 3 arbitrary
functions of one variable.
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Solution of the β(R)-system:
in the non-rich case:

I β(R)-alg consists of:(
pS
pv

)
v

(
β1 − β3

)
= 0⇔ β1 = β3

I The general solution depends on 1 function of 1 variable
and 1 constant (case 4a):

β1 = β3 = K1 pv ,

β2 =
K1p2

v

2

(∫ v

K2

pSS(τ,S) dτ −
p2
S

pv
(v ,S) + F (S)

)
.

(K2 can be absorbed into arbitrary function)

I ∃ strict entropies.

in the rich case:

I β(R)-alg is empty ⇒ solution depends on 3
arbitrary functions in one variable.
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Examples “Blowup” example

Blowup example

R1 = [−1, 0, u2 + 1]T , R2 =
[ u3

(u2)2 − 1
, −1, u1

]T
,

R3 = [1, 0, 1− u2]T .

I non-rich frame

I rank(λ(R)-alg) = rank(β(R)-alg) = 1
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Solution of the λ-system
λ(R)-alg: 2λ2 = (1− u2)λ1 + (1 + u2)λ3 involves all three
λ’s (case IIa) ⇒ the general solution depends on two
constants:

λ1 = C1 − 2 C2, λ2 = C1 + (u2 − 1) C2, λ3 = C1 .

fluxes:

f (u) =


(C1 + C2 (u2 − 1)) u1 + C2 u3,

u2 (C1 − C2 + 1
2 C2 u2),

C2 u1 (1− (u2)2)− C2 u2 u3 + (C1 − C2) u3

 .
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Solution of the β-system

β(R)-alg: (u2 − 1)β1 = (u2 + 1)β3 the general solution
depends on one arbitrary function of one variable:

β1 ≡ 0, β2 = F (u2), β3 ≡ 0,

extensions (modulo affine parts):

η(u1, u2, u3) = G (u2) , where G ′′ = F .
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Examples Rich orthogonal frame

Rich orthogonal frame

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [0, 0, 1]T .

λ(R)-alg and β(R)-alg are empty ⇒ general solutions of
λ(R) and β(R) depend on 3 arbitrary functions of 1 variable:

λ1 = F1(v), λ2 =
1√
v

∫ √v
∗

F1(τ2) dτ +
1

u1
F2

(
u2

u1

)
,

λ3 = F3(u3);

β1 = v G1(v), β2 =
√

v

∫ √v
∗

G1(τ2) dτ + u1 G2

(
u2

u1

)
,

β3 = G3(u3), where v = v = (u1)2 + (u2)2.

any solution of λ-system can be combined with any solution
of β-system.
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Appendix Jacobian structures

Jacobian structures
I M is a manifold with a flat connection ∇.

I J : X (M)→ X (M) is called a Jacobian if ∃ a vector
field V ∈ X (M) s. t.

J(X ) = ∇XV , ∀X ∈ X (M).

We then use notation JV .

I J is a Jacobian ⇒
∇X J(Y )−∇Y J(X ) = J([X ,Y ]) ∀X ,Y ∈ X (M) (*)

I if (u1, . . . , un) are affine coordinates and

V =
n∑

i=1

f i (u)
∂

∂ui
, then JV ( ∂

∂uj
) =

n∑
i

∂f i

∂uj

∂

∂ui

I if R = (r1, . . . , rn) is an eigenframe of a Jacobian map:

J(ri ) = λi ri for λi : M → R, then (*) evaluated on

X = ri ,Y = rj ⇒ the λ-system.
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Appendix Hessian structures

Hessian structures
I M is a manifold with a flat connection ∇.

I a metric g on M is called a Hessian if ∃ a function
ν : M → R s. t. ⇔ ∀X ,Y ∈ X (M).:

g(X ,Y ) = (∇Xdη)(Y ) := X (dη(Y ))− d η(∇XY )

We then use notation gη.

I g is a Hessian ⇒
(∇Xg)(Y ,Z ) = (∇Y g)(X ,Z ), ∀X ,Y ,Z ∈ X (M) (*)

I if (u1, . . . , un) are affine coordinates then

gη( ∂
∂ui
, ∂
∂uj

) = ∂2η
∂ui ∂uj

I if R = (r1, . . . , rn) is orthogonal: g(ri , rj) = δijβ
i for

βi : M → R, then (*) evaluated on
X = ri ,Y = rj ,Z = rk ⇒ the β-system.
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Appendix Sévennec’s problem

Sévennec’s problem: For a given quasilinear system

vt + A(v)vx = 0 ,

Sévennec shows that there is a coordinate system in which
the system is conservative if and only if there exists a flat
and symmetric affine connection ∇ such that the eigenvalues
of A satisfy

ri (λ
j) = Γj

ji (λ
i − λj) for i 6= j ,

(λi − λk)Γk
ji = (λj − λk)Γk

ij for i < j , i 6= k , j 6= k .,

where Γj
ji are the Christoffel symbols of ∇ relative to the

eigenframe of A.
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