Object-image correspondence under projections

Irina Kogan
North Carolina State University

joint work with

Joseph Burdis
North Carolina State University and BB&T bank

ACM Symposium on Computational Geometry 2012

Chapel Hill , June 17- 20, 2012




Projection problem:
Given: A subset Z ¢ R3 and a subset X ¢ R2.

Decide: whether there exists a projection P: R3 — R? such that X = P(2)

Motivation: Establishing a correspondence between objects in 3D and
their images, when camera parameters and position are unknown.

11 degrees of freedom:

e location of the center (3 parameters);

e position of the image plane (3 parameters);
coordinates (not necessarily orthogonal) on
the image plane (5 parameters).
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Projection problem:
Given: A rational algebraic curve Z C R3 and a rational algebraic curve X C R2.

Decide: whether there exists a projection P: R3 — R? such that X = P(2)

Example: Consider the projection of Z parametrized by

21(8) = 53, 20(s) = s°, 23(5) = s

from (0,0, 0) to the plane 23 = 1: |z = % and y = %

(s2,s*) occupies half of the parabola X
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We still say that Z projects to X.



Projections:

PR3 - R?
P11 21 + P12 22 +Pp1323 + P14

p31 21 + P32 20 + P33 23 + P34

_ p2121 +P2222 + P2323 1+ P24 ’
y = . (1)
P31 21 + P32 22 + P33 23 + P34

€Tr =

describes

e central projection if det(pij)gii’%g’ #= 0
(12 parameters but 11 degrees of freedom, because multiplication of all
p;j by the same non-zero constant gives the same projection.).

e parallel projection if denominator is a non-zero constant
(8 parameters/degrees of freedom).

e In the paper, we consider central and parallel projections.

e In the talk, we consider central projections only.



Main idea of the algorithm

To use the relation between the projection problem and the group equivalence
problem to eliminate all unknown projection parameters except the center of

the projections.



Group-equivalence of planar curves

The projective group:

PGL(3) = {equivalence classes of 3 x 3 non-singular
matrices up to multiplication by a non-zero constant.}

PGL(3) acts R? by linear fractional transformation:

a11 T+ ai2y + ais

a31 T+ p3oy + azz’
as1 T + axpy + an3

a31 T + a3z2y + a3z

<
|

Definition: We say that X7 C R2 is PGL(3)-equivalent to X5 C R?

if 3A € PGL(3) such that X = A(X7)

Notation: X3 = Xo.




Projection criterion for algebraic curves

A curve Z C R3, parametrized by z1(s), zo(s), z3(s) projects to a curve
X C RR? by a central projection if and only if 3 ¢1, ¢o,c3 € R such that X is

PG L(3)-equivalent to a planar curve parametrized by

. <21(8)+61 22(8)+62>
© \zs(s) +e3’ 23(s) +es

Remark: the projection center is (—c1, —c2, —c3).



Group-equivalence problem for planar curves

Problem: Let a group G act on R2. Given two planar algebraic curves X7, Xo,
decide if there exists A € G such that X1 = A(X>).

Proposed solution: is based on an algebraic adaptation of a method from
differential geometry that solves local equivalence problem for smooth curves.

¢ |n the paper, we present solution for general G.

e Inthe talk, G = PGL(3).
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Rational differential invariants and signatures.
Let X be a rational algebraic curve with a parameterization (z(t), y(t)).

Classical curvatures and arclengths:

SEQ): k= A2l ds= Vi2 4 92 dt = ke = 9 g, ...
] __ 3k (ksst+3 /4:3)—5 mg _ .1/3 __du
SA(2): p= 5 <5/3 , da=rK">ds = po = 75, paa, -
Opaaapa—"T §Q—9 gé 1/3 d
PGL(3): n = 2Haoaak 6u873 Ha B dpz,uo/ da = nP:d_Z’

K = n3and T = n, are rational differential PG L (3)-invariants Definition. If
X is not a line or a conic, then its PGL(3)-signature S|y is the planar curve
with rational parametrization

t — (K (1), T'(¢))

Theorem. If X1 and X» are not lines or conics then

X1 =X <— Sy, = Sx,-
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Examples of solving PG L(3)-equivalence problem

Is a(t) = (t%?l—tl’ t13o—|i> implicitly defined by 23 4+ ¢y> — 10zy = 0

PGL(3)-equivalent to

B(s) = (s3+3 543 ST2 o4 1) implicitly defined by y3 — zy 4+ 1 = 0?

s+1
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e The signature S, for a(t) = < 107 1Ot2> is a parametric curve

3417 t341
" 9261 (0 -3+ 1)3¢3 21 (B34 1)4
(1) = = 50 (t3-1)8 (1) = 10 (3 — 1)4

e The signature Sy for B(s) = <33+3 ij:” ST2 g4 1) is a parametric
curve

9261 1

Klsts) = =55 (2135 13858
(s°4+9s°4+36s"+83s°4+120s°+111s*4+655°+24s°+6s+ 1)
(s°+6s°+155"+19s>+ 1252+ 35+ 1)2
21 (s3+3s5°+3s+2)*

Tg(s) = — :

10 (s24+3s+3)4s%

e Isittrue that S» = Sg and hence o and g are PGL(3)-equivalent?

— S and Sg have the same implicit equation:

0 = 62523502209 4+ 396974617207 — 6401203200 K + 5250987000 T2
— 2032128000 KT + 163840000 K2 4+ 25930800072 4 53760000 K T2
4+ 44100007%
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Over C it is a sufficient condition, but not over R.

We can look for a real reparameterization by solving 7'|o(t) = T'|g(s) for  in
terms of s:

t = s + 1 indeed works. Yesl!!!

The PGL(3) transformation that brings o to 3 is
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Curves X7 and X5

= 1000 -®00 - 600 -400 -200
L L 1 L 1 L 1 L 1

0
!

have the same signature
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s 7 (w) = (w’tgfl U}ﬁ) implicitly defined by 43 — 22 4+ 242 = 0 PGL(3)-

equivalent to o and 37?

No! because its signature is different:

250047
12800
250047

and so Sy = <W7 O) Is a point!

Kl|y(w) = and T'|y(w) =0
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Algorithm for central projections.

INPUT: Rational parameterizations (z1(s), z2(s), z3(s)) € Q(s)3 and
(z(¢t), y(t)) € Q(t)? of algebraic curves Z C R3 and X C R2, where Z
is not a line.

OUTPUT: The truth of the statement:

3 central projection P such that X = P(Z2).

NON-RIGOROUS OUTLINE:

1. if X is a line then Z can be projected to X if and only if Z is coplanar.

— (7z1(s)+ec1 z2(s)+co) : -
2. €c .= (Z3(8)+C3, Z3(S)+C3) Is a family of parametric curves.

3. if X' is a conic then Z can be projected to X if and only if ¢ = (¢1, ¢2, ¢3),
such that e.(s) parametrizes a conic.

4. if X is neither a line or a conic then Z can be projected to X if and only if
Je such that the signature of the curve parametrized by e.(s) is contained
in the signature of X.
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Example: central projections of the twisted cubic

Can the twisted cubic Z parametrized by
M(s) = (33, 2, s) , s €R

104

-10 =
- 1000 1,000, 100

be projected to a curve X7 parametrized by «a(t) = ( t%itl , t13(1:21> with an

implicit equation z> + y3 — 10y 2z = 0?
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e The signature of X’y is parametrized by invariants:

21 (3 +1)°
10 (3 — )4

9261 (t° — 34 1)3¢3
50 (t3—1)8

Kla(t) = — , T'a(t) =

e Compute invariants Kle(c,s) and T|e(c,s) for the curve ec.(s) =
3 2
(S e s +CQ> with indetreminant values of c.

s+c3’ s+c3

e Does there exist ¢ such that (K|c(c,s), T|e(c, s)) parametrize the same
signature as (K |a(t), T|a(t))?

e This is indeed true for c=(1,0,0).

e Yes!! The twisted cubic can be projected to 2> + y3> — 10y z = O.

e A possible projection is x = aF10 Y= a1

It follows that the twisted cubic can be projected to X5 because X7 = X> »



Can the twisted cubic Z parametrized by

M(s) = (33, 2, s) , s e R

104

_—

-1000 1,000. 100

. 3 2 .
be projected to a curve X3 parametrized by ~(t) = ( tfH : tfH) with an

implicit equation y3 + y2 z — 22 = 07?
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e The signature of X3 degenerates to a point.

250047

Klv(t) = 25500

and T'|4(t) =0, VteR.

e We need to determine if there exists ¢ such that a curve parametrized by

3 2
ec(s) = (SS_[_"C?, Ss—l_—|_c(;2> has the same constant invariants as X5.
e This is indeed true for c=(0,0,1).

e Yes!! The twisted cubic can be projected to y3 + y2z — 22 = 0.

e Apossible projectionis x = 7,y = Z;ﬁ

e Recall that X3 is not PGL(3)-equivalent to X7 and X>.
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Can the twisted cubic be projected to a parabola parametrized by (¢, t2)?

e Does there exists c such that a curve parametrized by

33—|—cl 32—|-02
s+c3 s+c3

ec(s) = (
is a quadric?

oYeS!!61=(32:C3:O

Can the twisted cubic be projected to quintic parameterized by (¢, t°)?

e The signature of the quintic degenerates to a point:

1029
K(t) = andT'(t) =0, Vt.
(t) 153 ()
e Does there exists ¢ such that
1029
Kle(e,s) = and T'|¢(c,s) = 0, Vs € R?

128
e NO!I Substitution of several values of s gives an inconsistent system on c.
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Previous works

Finite lists of points

e Hartley and Zisserman (2004) set up a system of conditions on the
projection parameters and then check whether or not this system has a
solution.

e Arnold, Stiller, and Sturtz (2006, 2007) define an algebraic variety that
characterizes pairs of lists related by a parallel projection.

Curves and surfaces

e Feldmar, Ayache, and Betting (1995) set up a system of conditions on the
projection parameters with known internal parameters (central projections
with 6 unknown parameters vs 12 considered here).
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Advantage of our approach

e We need to eliminate 3 projection parameters instead of 12. In general,
the less parameters to eliminate — the better (although other factors may
be important).

e The same approach can be used in the case of parallel projections.

e Our approach can be used for finite lists of points (with signatures based
on a separating set of algebraic invariants)

Implementation: The projection problem can be considered over C and
the proposed method is easier to implement over C.
Maple Code

www.math.ncsu.edu/~iakogan/symbolic/projections.html
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Can we use the same method to solve the projection problem
for non-rational curves?

In principle, yes, but

one has to be careful when describing a family of planar curves

E :{<21+01 22+02>
c 23+ c3 23+ c3

(21,22,23) € Z}

by an implicit equation.

Assume Z is given by implicit equations g1(z1, 22, 23) = 0, g>(21, 22, 23) =
O. For fixed c1, cp, c3 we need to eliminate z1, 25, z3 from the equations

0 = g1(z1,%22,23)
0 = go(21,22,23)

z1 +c1
r = ———
23+ c3
2zt
y e —

~3 + 3 24



Unfortunately, in general, elimination does not commute with specialization of
the parameters c1, co, c3 .

Example: the twisted cubic is implicitly defined by equations
21 — 2023 =0, zQ—z§=O

If ¢ is such that co; % —c3 and c¢; # c3, elimination of 21, 2, z3 from the
equations

. 21t
21—2223—0, w—m,
3 3

> zp + ¢

3 3

leads to

0 = (—c5—c)z°+ (5+ca)y’z+ (c1 +czex)zy+
(20103—205)x—|— (cg —c)yS+ (—=3cqyc3 —3c§62)y2—|—
(30%034—30102)3;—0% —cg

If co = —c% and c¢; = ¢3, the elimination leads to

y2—x—|—03y—|—c§=O.
25



Projection criterion for list of points™:

Alist Z = (z',...,2™) of m points with coordinates z! = (27,25, 25),
r = 1...m, projects onto a list X = (x!,...,x™) of m points in R? with
coordinates x” = (a",y") by a finite projection if and only if there exist

c1,co,c3 € Rand [A] € PGL(3), such that

(", y", 111 = [A] (21 + c1, 25 + ¢, 23 + 3]l forr=1...m.

*separating sets of algebraic invariants can be used to solve group-equivalence problems for
sets of points
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Continuous vs. discrete:

Projection problem for curves vs. projection problems for finite lists of points.

/_‘\\_’_/ Jpace Curve

N
wm
Cueve

fZ = (z1,...,2™)is adiscrete sampling of acurve Z and X = (x1,...,x™)
is a discrete sampling of X', these sets might not be in a correspondence under
a projection even when the curves Z and X" are related by a projection.
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Thank you !!!

*Additional slides follow
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Differentially separating set of rational PG L (3)-invariants:

_I_

_I_

+ + |

_I_

_I_

Ao = 9y5) (D12 _ 45 4(*) 4(3) @) + 40 [y(3)]3,

729
8 (A2)8
126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) _ 25 y(4) [y(3)]2)
189 [y®]2 [y@]* (4 [y¥]? + 15y y*)
210y y®) [y (63 [y™]? [y?1? — 60y [yP17 P 4+ 32 [y)Y)
525 3y (9 [y [y1® 4+ 15 [y™W]? [y®)? [y?]2 — 60y [yP]* ) + 64 [yC

3
11200 [y<3)]8> :

2)14
L oo
8y Do (9y® [y - 36y )y [yP]? — 45 [y )7 [yP]? + 120y [yP]? yP)
504 [y(®]3 [yP]° — 504 [y(®]? [y@]3 (9y®) y® y 4 15 [y*D]2 42 — 25y [
28y (432 [y™]? [y®1? [y P]° 4+ 243 [y D17y [yP])* — 1800y y ) [y3]3 [y~
240y [y)° 4P + 540y [y ]2 [y] [yP]® 4 6600 [y D17 [yP]* 4> — 2000y
5175 [y [y®1? [y]? 4 1350 [yP]* [y?]3) — 2835 [y®)]* [y(2)]*

252 [y®]3y3) [y2]? (9y™) y*) — 136 [y¥]?) — 35840 [y*))? [y*]°

630 [y]? [y [v®] (69 [y]1? [y*])? — 160 [yP]* — 153y [y)? [y*)])
2100y [y*®]2 43 (72 [yP]* 4 63 [y V]2 [yP]? — 193y [y3]2yP)
7875 [y 1" (Bly ™12 @12 - 22y PP [y @] + 9 [y )

(18 y D [y2]* Ay — 189 [y(9]? [y(2)1°
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The restriction of Kp|y and Tp|y to a planar curve X with rational
parameterization (x(t), y(t)) is computed by substitution

Y y(k.—l)
y(l) — T 5y y(k) — . ) (3)
X T
into the formulas for invariants.
o y(l), . ,y(k) are rational functions of ¢t unless X is a vertical line.
e Invariants Kp|y and T'p|y are rational functions of ¢ unless As| y R?) 0.
t
e As|y = Oifandonlyif X is a line or a conic.

R(¢)

When the restriction of invariants to the family of curves Z. parametrized

by e(c, s) 1= (2812, 2%312) is computed the differentiation in H is

taken with respect to s.

For the values ¢, such that ¢(c, s) is not a line or a conic, specialization of
c commutes with restriction of invariants Kp| > and T’p| 5 .

30



ALGORITHM:

. B
1. if | 71 = othenif [ | = O then return TRUE else return FALSE:
Y | R(t) i | R(s)

. (z1Fc1 zo+4c 2.
2. e = (2EL, 22) € Q(ep, 2,03, 5)%
3

if Do)y o 0 then if 3(cq, ¢o, c3) € R3

234c3 = OA| S| #= OA Dgle = 0

R(s) € 1 R(s) R(s)
then return TRUE else return FALSE.

4. return the truth of the statement:

3(c1,¢0,c3) € R3

€
.

zz3+c3 = 0 A
R(s)

= 0 AN Aple # 0O (4)
R(s) R(s)

AVs € R

R
Kple = Kply A Tple = Tply.
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