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Projection problem:

Given: A subset Z ⊂ R3 and a subset X ⊂ R2.

Decide: whether there exists a projection P : R3 → R2 such that X = P (Z)

Motivation: Establishing a correspondence between objects in 3D and
their images, when camera parameters and position are unknown.

11 degrees of freedom:

• location of the center (3 parameters);
• position of the image plane (3 parameters);
• coordinates (not necessarily orthogonal) on

the image plane (5 parameters).
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Projection problem:

Given: A rational algebraic curve Z ⊂ R3 and a rational algebraic curve X ⊂ R2.

Decide: whether there exists a projection P : R3 → R2 such that X = P (Z)

Example: Consider the projection of Z parametrized by

z1(s) = s3, z2(s) = s5, z3(s) = s

from (0,0,0) to the plane z3 = 1: x = z1
z3

and y = z2
z3
.

Then P (Z) =
(
s3

s ,
s5

s

)
= (s2, s4) occupies half of the parabola X

parametrized x = t, y = t2 with x > 0.

We still say that Z projects to X .

5



Projections:

P : R3 → R2

x =
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,

y =
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34
. (1)

(1) describes

• central projection if det(pij)
j=1,2,3
i=1,2,3 6= 0

(12 parameters but 11 degrees of freedom, because multiplication of all
pij by the same non-zero constant gives the same projection.).

• parallel projection if denominator is a non-zero constant
(8 parameters/degrees of freedom).

• In the paper, we consider central and parallel projections.

• In the talk, we consider central projections only.
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Main idea of the algorithm

To use the relation between the projection problem and the group equivalence
problem to eliminate all unknown projection parameters except the center of
the projections.
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Group-equivalence of planar curves

The projective group:

PGL(3) = {equivalence classes of 3× 3 non-singular

matrices up to multiplication by a non-zero constant.}

PGL(3) acts R2 by linear fractional transformation:

x̄ =
a11 x+ a12 y + a13

a31 x+ p32 y + a33
,

ȳ =
a21 x+ a22 y + a23

a31 x+ a32 y + a33
.

Definition: We say that X1 ⊂ R2 is PGL(3)-equivalent to X2 ⊂ R2

if ∃A ∈ PGL(3) such that X2 = A(X1)

Notation: X1
∼= X2.
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Projection criterion for algebraic curves

A curve Z ⊂ R3, parametrized by z1(s), z2(s), z3(s) projects to a curve
X ⊂ R2 by a central projection if and only if ∃ c1, c2, c3 ∈ R such that X is
PGL(3)-equivalent to a planar curve parametrized by

εc =

(
z1(s) + c1
z3(s) + c3

,
z2(s) + c2
z3(s) + c3

)

Remark: the projection center is (−c1,−c2,−c3).
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Group-equivalence problem for planar curves

Problem: Let a group G act on R2. Given two planar algebraic curves X1, X2,
decide if there exists A ∈ G such that X1 = A(X2).

Proposed solution: is based on an algebraic adaptation of a method from
differential geometry that solves local equivalence problem for smooth curves.

• In the paper, we present solution for general G.

• In the talk, G = PGL(3).
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Rational differential invariants and signatures.

Let X be a rational algebraic curve with a parameterization (x(t), y(t)).

Classical curvatures and arclengths:

SE(2): κ = ÿẋ−ẍẏ
(ẋ2+ẏ2)3/2 , ds =

√
ẋ2 + ẏ2 dt ⇒ κs = dκ

ds , κss, . . .

SA(2): µ = 3κ (κss+3κ3)−5κ2
s

9κ8/3 , dα = κ1/3ds ⇒ µα = dµ
dα, µαα, . . .

PGL(3): η = 6µαααµα−7µ2
αα−9µ2

α µ

6µ
8/3
α

, dρ = µ
1/3
α dα ⇒ ηρ = dη

dρ, . . . .

K = η3 and T = ηρ are rational differential PGL(3)-invariants Definition. If
X is not a line or a conic, then its PGL(3)-signature S|X is the planar curve
with rational parametrization

t→ (K(t), T (t))

Theorem. If X1 and X2 are not lines or conics then

X1
∼= X2 ⇐⇒ SX1

= SX2
.
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Examples of solving PGL(3)-equivalence problem

Is α(t) =
(

10 t
t3+1

, 10 t2

t3+1

)
implicitly defined by x3 + y3 − 10x y = 0

PGL(3)-equivalent to

β(s) =
(
s3+3 s2+3 s+2

s+1 , s+ 1
)

implicitly defined by y3 − x y + 1 = 0?
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• The signature Sα for α(t) =
(

10 t
t3+1

, 10 t2

t3+1

)
is a parametric curve

K|α(t) = −
9261

50

(t6 − t3 + 1)3 t3

(t3 − 1)8
, T |α(t) = −

21

10

(t3 + 1)4

(t3 − 1)4
.

• The signature Sβ for β(s) =
(
s3+3 s2+3 s+2

s+1 , s+ 1
)

is a parametric
curve

K|β(s) = −
9261

50

1

(s2 + 3 s+ 3)8 s8

(s9 + 9 s8 + 36 s7 + 83 s6 + 120 s5 + 111 s4 + 65 s3 + 24 s2 + 6 s+ 1)
(s6 + 6 s5 + 15 s4 + 19 s3 + 12 s2 + 3 s+ 1)2

T |β(s) = −
21

10

(s3 + 3 s2 + 3 s+ 2)4

(s2 + 3 s+ 3)4 s4
.

• Is it true that Sα = Sβ and hence α and β are PGL(3)-equivalent?

– Sα and Sβ have the same implicit equation:

0 = 62523502209 + 39697461720T − 6401203200K + 5250987000T 2

− 2032128000K T + 163840000K2 + 259308000T 3 + 53760000K T 2

+ 4410000T 4
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Over C it is a sufficient condition, but not over R.

We can look for a real reparameterization by solving T |α(t) = T |β(s) for t in
terms of s:

t = s+ 1 indeed works. Yes!!!

The PGL(3) transformation that brings α to β is

x→
10 y

x
, y →

10

x
.
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Curves X1 and X2 have the same signature
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Is γ(w) =
(
w3

w+1,
w2

w+1

)
implicitly defined by y3 − x2 + x y2 = 0 PGL(3)-

equivalent to α and β?

No! because its signature is different:

K|γ(w) =
250047

12800
and T |γ(w) = 0

and so Sγ =
(

250047
12800 , 0

)
is a point!
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Algorithm for central projections.

INPUT: Rational parameterizations (z1(s), z2(s), z3(s)) ∈ Q(s)3 and
(x(t), y(t)) ∈ Q(t)2 of algebraic curves Z ⊂ R3 and X ⊂ R2, where Z
is not a line.

OUTPUT: The truth of the statement:

∃ central projection P such that X = P (Z).

NON-RIGOROUS OUTLINE:

1. if X is a line then Z can be projected to X if and only if Z is coplanar.

2. εc :=
(
z1(s)+c1
z3(s)+c3

, z2(s)+c2
z3(s)+c3

)
is a family of parametric curves.

3. if X is a conic then Z can be projected to X if and only if ∃c = (c1, c2, c3),
such that εc(s) parametrizes a conic.

4. if X is neither a line or a conic then Z can be projected to X if and only if
∃c such that the signature of the curve parametrized by εc(s) is contained
in the signature of X .
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Example: central projections of the twisted cubic

Can the twisted cubic Z parametrized by

Γ(s) =
(
s3, s2, s

)
, s ∈ R

be projected to a curve X1 parametrized by α(t) =
(

10 t
t3+1

, 10 t2

t3+1

)
with an

implicit equation x3 + y3 − 10 y x = 0?
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• The signature of X1 is parametrized by invariants:

K|α(t) = −
9261

50

(t6 − t3 + 1)3 t3

(t3 − 1)8
, T |α(t) = −

21

10

(t3 + 1)4

(t3 − 1)4
.

• Compute invariants K|ε(c, s) and T |ε(c, s) for the curve εc(s) =(
s3+c1
s+c3

, s
2+c2
s+c3

)
with indetreminant values of c.

• Does there exist c such that (K|ε(c, s), T |ε(c, s)) parametrize the same
signature as (K|α(t), T |α(t))?

• This is indeed true for c=(1,0,0).

• Yes!! The twisted cubic can be projected to x3 + y3 − 10 y x = 0.

• A possible projection is x = 10 z3
z1+1 , y = 10 z2

z1+1.

It follows that the twisted cubic can be projected to X2 because X1
∼= X2.
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Can the twisted cubic Z parametrized by

Γ(s) =
(
s3, s2, s

)
, s ∈ R

be projected to a curve X3 parametrized by γ(t) =
(
t3

t+1 ,
t2

t+1

)
with an

implicit equation y3 + y2 x− x2 = 0?
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• The signature of X3 degenerates to a point.

K|γ(t) =
250047

12800
and T |γ(t) = 0, ∀t ∈ R.

• We need to determine if there exists c such that a curve parametrized by

εc(s) =
(
s3+c1
s+c3

, s
2+c2
s+c3

)
has the same constant invariants as X3.

• This is indeed true for c=(0,0,1).

• Yes!! The twisted cubic can be projected to y3 + y2 x− x2 = 0.

• A possible projection is x = z1
z3+1 , y = z2

z3+1.

• Recall that X3 is not PGL(3)-equivalent to X1 and X2.
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Can the twisted cubic be projected to a parabola parametrized by (t, t2)?

• Does there exists c such that a curve parametrized by

εc(s) =

(
s3 + c1
s+ c3

,
s2 + c2
s+ c3

)
is a quadric?

• Yes!! c1 = c2 = c3 = 0

Can the twisted cubic be projected to quintic parameterized by (t, t5)?

• The signature of the quintic degenerates to a point:

K(t) =
1029

128
and T (t) = 0 , ∀t.

• Does there exists c such that

K|ε(c, s) =
1029

128
and T |ε(c, s) = 0, ∀s ∈ R?

• NO!! Substitution of several values of s gives an inconsistent system on c.
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Previous works

Finite lists of points

• Hartley and Zisserman (2004) set up a system of conditions on the
projection parameters and then check whether or not this system has a
solution.

• Arnold, Stiller, and Sturtz (2006, 2007) define an algebraic variety that
characterizes pairs of lists related by a parallel projection.

Curves and surfaces

• Feldmar, Ayache, and Betting (1995) set up a system of conditions on the
projection parameters with known internal parameters (central projections
with 6 unknown parameters vs 12 considered here).
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Advantage of our approach

• We need to eliminate 3 projection parameters instead of 12. In general,
the less parameters to eliminate – the better (although other factors may
be important).

• The same approach can be used in the case of parallel projections.

• Our approach can be used for finite lists of points (with signatures based
on a separating set of algebraic invariants)

Implementation: The projection problem can be considered over C and
the proposed method is easier to implement over C.
Maple Code
www.math.ncsu.edu/˜iakogan/symbolic/projections.html
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Can we use the same method to solve the projection problem
for non-rational curves?

In principle, yes, but

one has to be careful when describing a family of planar curves

Z̃c =

{(
z1 + c1
z3 + c3

,
z2 + c2
z3 + c3

)∣∣∣∣∣ (z1, z2, z3) ∈ Z
}

by an implicit equation.

Assume Z is given by implicit equations g1(z1, z2, z3) = 0, g2(z1, z2, z3) =

0. For fixed c1, c2, c3 we need to eliminate z1, z2, z3 from the equations

0 = g1(z1, z2, z3)

0 = g2(z1, z2, z3)

x =
z1 + c1
z3 + c3

y =
z2 + c2
z3 + c3 24



Unfortunately, in general, elimination does not commute with specialization of
the parameters c1, c2, c3 .

Example: the twisted cubic is implicitly defined by equations

z1 − z2 z3 = 0, z2 − z2
3 = 0

If c is such that c2 6= −c23 and c1 6= c33, elimination of z1, z2, z3 from the
equations

z1 − z2 z3 = 0, x =
z1 + c1
z3 + c3

,

z2 − z2
3 = 0, y =

z2 + c2
z3 + c3

.

leads to

0 = (−c23 − c2)x2 + (c23 + c2) y2 x+ (c1 + c3 c2)x y +

(2 c1 c3 − 2 c22)x+ (c33 − c1) y3 + (−3 c1 c3 − 3 c23 c2) y2 +

(3 c22 c3 + 3 c1 c2) y − c21 − c
3
2

If c2 = −c23 and c1 = c33, the elimination leads to

y2 − x+ c3 y + c23 = 0.
25



Projection criterion for list of points∗:

A list Z = (z1, . . . , zm) of m points with coordinates zi = (zr1, z
r
2, z

r
3),

r = 1 . . .m, projects onto a list X = (x1, . . . ,xm) of m points in R2 with
coordinates xr = (xr, yr) by a finite projection if and only if there exist
c1, c2, c3 ∈ R and [A] ∈ PGL(3), such that

[xr, yr,1]T = [A][zr1 + c1, z
r
2 + c2, z

r
3 + c3]T for r = 1 . . .m.

∗separating sets of algebraic invariants can be used to solve group-equivalence problems for
sets of points
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Continuous vs. discrete:

Projection problem for curves vs. projection problems for finite lists of points.

If Z = (z1, . . . , zm) is a discrete sampling of a curveZ and X = (x1, . . . ,xm)

is a discrete sampling of X , these sets might not be in a correspondence under
a projection even when the curves Z and X are related by a projection.
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Thank you !!! ∗

∗Additional slides follow
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Differentially separating set of rational PGL(3)-invariants:
∆2 = 9 y(5) [y(2)]2 − 45 y(4) y(3) y(2) + 40 [y(3)]3.

KP =
729

8 (∆2)8

(
18 y(7) [y(2)]4 ∆2 − 189 [y(6)]2 [y(2)]6 (2)

+ 126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) − 25 y(4) [y(3)]2)

− 189 [y(5)]2 [y(2)]4 (4 [y(3)]2 + 15 y(2) y(4))

+ 210 y(5) y(3) [y(2)]2 (63 [y(4)]2 [y(2)]2 − 60 y(4) [y(3)]2 y(2) + 32 [y(3)]4)

− 525 y(4)y(2) (9 [y(4)]3 [y(2)]3 + 15 [y(4)]2 [y(3)]2 [y(2)]2 − 60 y(4) [y(3)]4 y(2) + 64 [y(3)]6)

+ 11200 [y(3)]8
)3

;

TP =
243 [y(2)]4

2 (∆2)4

(
2 y(8) y(2) (∆2)2

− 8 y(7) ∆2 (9 y(6) [y(2)]3 − 36 y(5) y(3) [y(2)]2 − 45 [y(4)]2 [y(2)]2 + 120 y(4) [y(3)]2 y(2) − 40 [y(3)]4)

+ 504 [y(6)]3 [y(2)]5 − 504 [y(6)]2 [y(2)]3 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) − 25 y(4) [y(3)]2)

+ 28 y(6)
(
432 [y(5)]2 [y(3)]2 [y(2)]3 + 243 [y(5)]2 y(4) [y(2)]4 − 1800 y(5) y(4) [y(3)]3 [y(2)]2

− 240y(5) [y(3)]5 y(2) + 540y(5) [y(4)]2 [y(3)] [y(2)]3 + 6600 [y(4)]2 [y(3)]4 y(2) − 2000y(4) [y(3)]6

− 5175 [y(4)]3 [y(3)]2 [y(2)]2 + 1350 [y(4)]4 [y(2)]3
)
− 2835 [y(5)]4 [y(2)]4

+ 252 [y(5)]3y(3) [y(2)]2 (9y(4) y(2) − 136 [y(3)]2)− 35840 [y(5)]2 [y(3)]6

− 630 [y(5)]2 [y(4)] [y(2)] (69 [y(4)]2 [y(2)]2 − 160 [y(3)]4 − 153 y(4) [y(3)]2 [y(2)])

+ 2100 y(5) [y(4)]2 y(3) (72 [y(3)]4 + 63 [y(4)]2 [y(2)]2 − 193 y(4) [y(3)]2 y(2))

− 7875 [y(4)]4 (8 [y(4)]2 [y(2)]2 − 22y(4) [y(3)]2 [y(2)] + 9 [y(3)]4)
)
.
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The restriction of KP |X and TP |X to a planar curve X with rational
parameterization (x(t), y(t)) is computed by substitution

y(1) =
ẏ

ẋ
, . . . , y(k) =

˙y(k−1)

ẋ
, (3)

into the formulas for invariants.

• y(1), . . . , y(k) are rational functions of t unless X is a vertical line.

• Invariants KP |X and TP |X are rational functions of t unless ∆2|X =
R(t)

0.

• ∆2|X =
R(t)

0 if and only if X is a line or a conic.

• When the restriction of invariants to the family of curves Z̃c parametrized
by ε(c, s) :=

(
z1(s)+c1
z3(s)+c3

, z2(s)+c2
z3(s)+c3

)
is computed the differentiation in (3) is

taken with respect to s.

• For the values c, such that ε(c, s) is not a line or a conic, specialization of
c commutes with restriction of invariants KP |Z̃c and TP |Z̃c.
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ALGORITHM:

1. if

∣∣∣∣∣ γ̇γ̈
∣∣∣∣∣ =

R(t)
0 then if

∣∣∣∣∣∣∣
Γ̇
Γ̈...
Γ

∣∣∣∣∣∣∣ =
R(s)

0 then return TRUE else return FALSE;

2. ε :=
(
z1+c1
z3+c3

, z2+c2
z3+c3

)
∈ Q(c1, c2, c3, s)

2;

3. if ∆2|γ =
R(t)

0 then if ∃(c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
∣∣∣∣∣ ε̇ε̈

∣∣∣∣∣ 6=R(s)
0 ∧ ∆2|ε =

R(s)
0

then return TRUE else return FALSE.

4. return the truth of the statement:

∃ (c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
∣∣∣∣∣ ε̇ε̈

∣∣∣∣∣ 6=R(s)
0 ∧ ∆2|ε 6=

R(s)
0 (4)

∧∀s ∈ R

∆2|ε 6=
R

0 ⇒ ∃t ∈ R

KP |ε =
R
KP |γ ∧ TP |ε =

R
TP |γ.
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