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Abstract. We consider general 1-d systems of hyperbolic conservation laws

with the aim of better understanding of the structure (“geometry”) of such sys-

tems. For a given frame R of vector fields, we derive two new overdetermined
PDE systems: the F (R)- and η(R)-systems. The former gives all conserva-

tive systems with eigenframe R, while the latter provides extensions for these

conservative systems. We also describe a recent result for non-rich, strictly
hyperbolic, 3 × 3 conservative systems, namely: two such systems with the

same eigencurves must necessarily also share Hugoniot loci.

1. Introduction. We consider 1-d, conservative n× n-systems

ut + f(u)x = 0 , t ≥ 0, x ∈ R , (1)

where the unknown u = u(t, x) = (u1, . . . , un)T ∈ Rn is the vector of conserved
quantities. The smooth flux f : Ωopen ⊂ Rn → Rn is assumed to be hyperbolic: its
JacobianDf(u) is R-diagonalizable at each state u ∈ Ω. In this case the eigenvectors
ri|u of Df(u) form a basis for each u ∈ Ω, and we refer to R := {r1, . . . , rn} as an
eigenframe of (1). The system (1) is strictly hyperbolic provided the corresponding
eigenvalues λ1(u), . . . , λn(u) are distinct at each u ∈ Ω.

While there is a well-developed theory for near-equilibrium solutions to strictly
hyperbolic systems (1) (see [2]), far less is known about large variation solutions.
In fact, there are systems admitting blowup solutions. While blowup of gradients
is well-known, the blowup in [1, 3, 6] is of the solution itself in L∞ and/or BV.
Although similar phenomena had been observed earlier, the examples in [1, 3, 6]
were new in that the solutions remain uniformly strictly hyperbolic as they explode.
Also, there is nothing pathological about the flux f(u) in these systems: it may be
polynomial. This type of behavior is still poorly understood. In particular, it is not
known if physical systems (e.g. compressible Euler) can exhibit similar behavior.
The examples in [1, 3, 6] are quite special: starting from a 1-parameter family of
2× 2 systems for (u1, u3), say, and then adding a third, decoupled conservation law
for the parameter u2, one obtains a 3 × 3-system (1). The same type of systems
also admit space-time periodic solutions [8]. However, it now appears that the
analytic structure of these systems is too special to be of further interest. Still, these
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systems do exhibit an interesting geometric structure in u-space. This motivates an
investigation of more general geometric issues for (1). E.g., can we prescribe curves
in u-space and find systems (1) with these as rarefaction curves (integral curves
of eigenfields)? Do the resulting systems possess extensions? Can we prescribe
other types of geometric quantities for a system of conservation laws: shock curves,
characteristic values, interaction coefficients, or combinations of such?

Before describing some recent results, we review the setup and findings in [4, 5].
In [4], we addressed the problem of determining the class of conservative systems
(1) such that Df(u) has a prescribed eigenframe R = {r1, . . . , rn}. This was formu-
lated as an algebraic-differential system, the “λ(R)-system,” for the corresponding
eigenvalues λ1, . . . , λn. This λ-system was then analyzed by appealing to various
integrability theorems (Frobenius, Darboux, Cartan-Kähler), and a complete break-
down of the case n = 3 was given. In general, once the λ’s are found, the flux f
can be determined by successive integration of n first order linear ODEs. It is a
non-obvious fact that there are frames R (see Example 2) that only admit trivial
fluxes f(u) = λ̄u + c (λ̄ ∈ R, c ∈ Rn). To discuss the issue of extensions of (1) we
recall the following definition and proposition [2]:

Definition 1.1. A smooth function η : Ω → R is an extension for (1) provided
the map u 7→ ∇η(u)Df(u) is the u-gradient of a scalar function q : Ω → R. An
extension η is an entropy for (1) provided it is a convex function of the conserved
quantities, i.e. the Hessian D2η(u) is positive semi-definite on Ω.

Proposition 1. Let R = {ri}ni=1 be the eigenframe of (1). Then η : Ω → R is an
extension for (1) if and only if

for each pair 1 ≤ i 6= j ≤ n, either λj = λi or
(
D2η

)
(ri, rj) = 0. (2)

In [5], we analyzed the following question: Given a frame R, how large is the class
of functions η which satisfy the orthogonality condition:(

D2η
)
(ri, rj) = 0. (3)

Such functions provide all extensions for strictly (and a subset of all extensions
for non-strictly) hyperbolic systems with eigenframe R. In [5], we reformulated
the orthogonality condition (3) as an over-determined algebraic-differential system,
the “β(R)-system.” The unknowns in this β-system are the lengths of the frame-
vectors ri as measured with respect to the inner-product D2η. The Hessian D2η is
determined by these lengths and the given frame R. In turn, the extensions η can
be determined, in principle, by integration of n(n+ 1) first order linear ODEs.

The results in [4, 5] provide information about how many conservative systems
there are with a given eigenframe, and how many extensions these systems are
equipped with. This information is given in terms of the number of free parameters
or functions that determine a general solution of the λ- and β-systems. E.g., for
the 3 × 3-case there are only two possibilities if the frame admits strictly hyper-
bolic systems: either the resulting systems are all rich1 or they form a 1-parameter
family (up to addition of a trivial flux). The latter class is more interesting one: it
covers systems with eigenframe that of the full Euler system, as well as the blowup
examples described above.

While the analysis in [4, 5] gives the sizes of the solutions sets for the λ- and
β-systems, it does not explicitly provide the fluxes and their extensions. As noted
above this requires additional, and potentially challenging, ODE integrations.

1We refer to [2] for this and other standard terminology.
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In this paper, we address this practical drawback by deriving two overdetermined,
but purely differential, systems f(R) and η(R), whose solutions provide directly
the fluxes f(u) with eigenframe R, and their associated extensions η(u). For the
former we use a coordinate-free notion of Jacobian maps2 and for the latter we
use a coordinate-free notion of Hessian metrics3. By solving the f(R)- and η(R)-
systems we avoid the additional integrations required to reconstruct fluxes and
extensions from the solutions of the λ- and β-systems. Not surprisingly, the degrees
of freedom in the general solutions to the f(R)- and η(R)-systems are determined
by the degrees of freedom in the general solution the λ(R)- and β(R)-systems,
respectively. In fact, the latter systems provide exactly the compatibility conditions
for the former overdetermined systems.

After reviewing some background on frames and connections in Section 2, we
derive the f(R)- and η(R)-systems and establish their relationships with the λ(R)-
and β(R)-systems in Sections 3 and 4. Section 5 provides some examples. Finally,
in Section 6, we describe a recent result relating Hugoniot loci and eigenframes.

2. Frames and connections.

2.1. Frames and coframes. Let Ω ⊂ Rn be an open set. Denote by X (Ω) and
X ∗(Ω) the sets of smooth vector fields and smooth one-forms on Ω ⊂ Rn, respec-
tively. A frame {r1, . . . , rn} is a set of smooth vector fields which are linearly inde-
pendent at each point u ∈ Ω. A coframe {`1, . . . , `n} is a set of smooth one-forms
which are linearly independent at each point u ∈ Ω. If `i(rj) = δij (Kronecker delta),
then the coframe and frame are dual. Given coordinates (u1, . . . , un) on Ω, the
associated coordinate frame is

{
∂
∂u1 , . . . ,

∂
∂un

}
, with dual coframe {du1, . . . , dun}.

For any frame R = {ri}ni=1, its structure coefficients ckij are defined by [ri, rj ] =∑
k c

k
ijrk, where [·, ·] denotes the commutator.

2.2. Connections. An affine connection ∇ on Ω is an R-bilinear map

X (Ω)×X (Ω)→ X (Ω) (X,Y ) 7→ ∇XY

such that for any smooth function h on Ω

∇hXY = h∇XY, ∇X(hY ) = (Xh)Y + h∇XY . (4)

A connection is uniquely defined by prescribing it on a frame:

∇ri
rj =

n∑
k=1

Γkijrk, (5)

where the coefficients Γkij are the connection components relative to R. The con-
nection has a unique extension to an R-bilinear map X (Ω)× T (Ω)→ T (Ω), where
T (Ω) is a set of all tensor products of X (Ω) and X ∗(Ω) (see [7]). We record the
following properties of this extension:

∇X h = X(h), ∇X(hω) = (Xh)ω+f∇Xω, X(ω(Y )) = [∇Xω](Y )+ω(∇XY ), (6)

2The notion of a Jacobian map was introduced in Remark 2.14 of [5] to provide an alternative,

coordinate-free derivation of the λ-system. It is different from the differential of a map, which in
coordinates, is also given by a Jacobian matrix.

3 The notion of a Hessian metric has been extensively studied [7]. In Remark 2.15 of [5], it was
used to provide an alternative, coordinate-free derivation of the β-system.
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where h is a function, ω is a one-form, and X,Y are vector-fields on Ω. Note that
(5)-(6) imply

∇ri`j = −
n∑
k=1

Γkij `k. (7)

We now fix the connection ∇ on Ω by requiring the state variables {ui}ni=1 of (1)
to be affine coordinates on Ω, i.e. we impose

∇ ∂

∂ui

∂
∂uj = 0 for all i, j = 1, . . . , n. (8)

This connection has the following two important properties:

cijk = Γijk − Γikj (Symmetry), (9)

where c’s and Γ’s are structure and connection coefficients of a frame, and

∇X ◦ ∇Y −∇Y ◦ ∇X = ∇[X,Y ] (Flatness), (10)

where X,Y ∈ X (Ω). Finally, we observe that if

ri =
n∑
k=1

Rki
∂

∂uk
and `i =

n∑
k=1

Lki du
k (i = 1, . . . , n) (11)

then (4) and (8) imply Γkij(u) = Lk(DuRj)Ri.

3. The f(R)-system. We fix a frame R = {ri}ni=1 on Ω and ask for the class of
hyperbolic systems (1) whose flux-Jacobians Df has eigenframe R. This was for-
mulated in [4] as an overdetermined algebraic-differential system for the eigenvalues
λi(u). To derive a purely differential system, which directly yields the components
of the flux f , we apply:

Proposition 2. Let {ui}ni=1 be affine coordinates on a simply connected open subset
Ω ⊂ Rn, and f =

(
f1, . . . , fn

)
: Ω → Rn be a smooth map. Then ri|u is an

eigenvector of the Jacobian matrix Df(u) if and only if there is a function λi : Ω→
R with

∇ri
F = λi ri, (12)

where the vector field F is defined by F := f1 ∂
∂u1 + · · ·+fn ∂

∂un . If (12) is satisfied,
then λi(u) is the corresponding eigenvalue of Df(u).

Hence, we seek a vector field F ∈ X (Ω) such that (12) is satisfied for i = 1, . . . , n.
We write F =

∑n
i=1 f̃

i ri. Then, using (4), we find that (12) is equivalent to
n∑
j=1

(
ri(f̃ j) +

n∑
k=1

f̃kΓjik
)
rj = λi ri. (13)

Collecting the coefficients, we obtain the systems

ri(f̃ j) +
n∑
k=1

f̃k Γjik = 0 for i 6= j, and λi = ri(f̃ i) +
n∑
k=1

f̃kΓiik . (14)

The f(R)-system (14)1 consists of n2 − n linear 1st order PDEs in n unknowns
{f̃ i}ni=1. For a given solution of (14)1, the flux f is determined by f = R (f̃1, . . . , f̃n)T ,
where the entries of matrix R are given by (11)1. Finally, the eignevalues λi of Df
are given by (14)2.
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As (14)1 is overdetermined for n > 2, the existence of solutions is not guaranteed.
We now derive necessary and sufficient conditions for the existence of solutions.
First, flatness of the connection (10) implies that

∇ri
◦ ∇rj

F −∇rj
◦ ∇ri

F = ∇[ri,rj ]F =
∑
k

ckij∇rk
F, (i 6= j). (15)

Substitution of (12) into (15) gives

∇ri

(
λjrj

)
−∇rj

(
λiri

)
=
∑
k

ckijλ
krk. (16)

By expanding (16) using (4), and then collecting the coefficients of the ri, we obtain
the following algebraic-differential system for the λi:

ri(λj) = Γjji(λ
i − λj), for i 6= j, (17)

(λi − λk)Γkji = (λj − λk)Γkij , for all distinct i, j and k. (18)

This is exactly the λ(R)-system derived in [4]. Therefore, a necessary condition for
existence of a solution to the f(R)-system is the existence of a solution to the λ(R)-
system. Vice versa, by substituting a solution {λi}ni=1 of the λ(R)-system into (14)2,
the combined system (14)1,2 is a system of Frobenius type.4 A direct computation
shows that this system is compatible. By Frobenius’ Theorem it follows that for
each solution {λi}ni=1 of the λ-system, and a choice of values f̃1(ū), . . . , f̃n(ū) at
some ū ∈ Ω, there is a unique solution of (14)1, that satisfies (14)2.

4. The η(R)-system. For a fixed frame R = {ri}ni=1 on Ω, we now ask for the
class of extensions for systems (1) whose flux-Jacobians Df have eigenframe R. By
restricting to extensions η satisfying (3), this was formulated in [5] as an overde-
termined algebraic-differential system for the lengths βi(u). To derive a purely
differential system, which directly yields the extensions of (1), we apply:

Proposition 3. Let {ui}ni=1 be affine coordinates on a simply connected open subset
Ω ⊂ Rn, and η : Ω → R. Then {ri|u}ni=1 are orthogonal with respect to the inner
product defined by the Hessian D2

uη(u) if and only if there exist functions βi : Ω→ R,
i = 1, . . . , n, such that

∇ri
dη = βi `i, for all i = 1, . . . , n, (19)

where {`1, . . . , `n} is the dual coframe to R. If (19) is satisfied, then βi is the length
of the vector ri|u relative to the Hessian inner product D2

uη.

Hence, we seek η : Ω → Rn such that (19) is satisfied for some functions βi. Since
dη =

∑
j rj(η)`j , and using (6)-(7), we obtain

∇ri
dη =

∑
j

(
ri(rj(η))−

∑
k

rk(η)Γkij
)
`j . (20)

Substituting (20) into (19) and collecting coefficients of `i, we obtain the systems

ri(rj(η))−
∑
k

Γkij rk(η) = 0 for i 6= j, and βi = ri(ri(η))−
∑
k

Γkii rk(η). (21)

The η(R)-system (21)1 consists of n(n− 1) 2nd order PDEs for the single unknown
η. For a given solution of (21)1, the lengths βi of the vectors ri|u relative to the
inner product D2

uη are given by (21)2.

4See [4] for Frobenius type systems and Frobenius’ Theorem adapted to the present context.
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We next derive necessary and sufficient conditions for the existence of solutions
to the overdetermined η(R)-system. Again, the flatness condition (10) implies

∇ri∇rjdη −∇rj∇rj dη = ∇[ri,rj ]dη =
∑
k

ckij∇rk
dη. (i 6= j) (22)

Substitution of (19) into (22) gives

∇ri(βj`
j)−∇rj (βi`i) =

∑
k

ckijβk`
k. (23)

By expanding (23) using (7), and then collecting the coefficients of `i, we obtain
the following algebraic-differential system for the βi:

ri(βj) = βj(Γ
j
ij + cjij)− β

iΓijj , for i 6= j, (24)

βkc
k
ij + βjΓ

j
ik − βiΓ

i
jk = 0 for i < j, i, j 6= k. (25)

This is exactly the β(R)-system derived in [5]. Thus, a necessary condition for
the existence of a solution to the η(R)-system is the existence of a solution to
the β(R)-system. Vice versa, given a solution {βi}ni=1 of the β(R)-system, we
introduce η̃i := ri(η) and rewrite (21)1,2 as a first order Frobenius type system in
the n unknowns η̃i:

ri(η̃j)−
∑
k

Γkij η̃k = 0 for i 6= j, and ri(η̃i)−
∑
k

Γkii η̃k = βi. (26)

A direct computation shows that this is a compatible system. By Frobenius’ The-
orem, we conclude that any solution {βi}ni=1 of the β(R)-system, together with
a choice of values η̃1(ū), . . . , η̃n(ū) at some point ū ∈ Ω, provide a unique solu-
tion of the system (26)1 satisfying (26)2. Finally, if {η̃i}ni=1 solve (26)1-(26)2, then
(η1, . . . , ηn) := (η̃1, . . . , η̃n)R−1 (R given by (11)), provide a solution η of the com-
bined system (21)1,2 via ηi = ∂η

∂ui
.

5. Examples. We include some representative examples where we use Maple code
developed by the authors5 to calculate explicit fluxes and their extensions from a
given eigenframe. Cf. Examples 6.5, 6.6, 6.8 and 6.13 in [5].

Example 1. Consider a rich orthogonal frame: r1 = (u1, u2, 0)T , r2 = (−u2, u1, 0)T ,
r3 = (0, 0, 1)T . Solving the f(R)-system, we obtain the family of fluxes depending
on three arbitrary functions of one-variable:

f(u) =

0BBBBBBB@
−u1

Z u1

∗

F2

“
1
a

p
(u1)2 + (u2)2 − a2

”
a
p

(u1)2 + (u2)2 − a2
da+ u1F1

`
(u1)2 + (u2)2

´
− F1

„
u2

u1

«
u2

u2

−u2

Z u1

∗

F2

“
1
a

p
(u1)2 + (u2)2 − a2

”
a
p

(u1)2 + (u2)2 − a2
da+ u2F1

`
(u1)2 + (u2)2

´
− F1

„
u2

u1

«
F3(u

3)

1CCCCCCCA
.

Solving the η(R)-system, we obtain the family of extensions also depending on three
arbitrary functions of one-variable:

η(u) =

Z u1

∗

G2

“
1
a

p
(u1)2 + (u2)2 − a2

”
a
p

(u1)2 + (u2)2 − a2
da+G1

`
(u1)

2 + (u2)2
´

+G3(u
2). (27)

There are strictly hyperbolic systems in this class, and any extension of such a
system is given by (27). For this frame, it is much harder (and beyond the capability

5http://www.math.ncsu.edu/~iakogan/symbolic/geometry_of_conservation_laws.html

http://www.math.ncsu.edu/~iakogan/symbolic/geometry_of_conservation_laws.html
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of Maple) to obtain fluxes and extensions if we first solve the λ(R) and β(R)-
systems, and then try to find f and η by solving ODE’s. It is not difficult, however,
to find λ’s and β’s, after we found f and η, using, for instance, (14)2 and (21)2.

Example 2. For the rich frame r1 = (u1, u2, 0)T , r2 = (−u2, u1, 0)T , r3 =
(−u2, u1, 1)T , we solve the f(R)-system and obtain only trivial fluxes:

f(u) = c1(u1, u2, u3)T + (c2, c3, c4)T ,

with λ1 = λ2 = λ3 = c1 ∈ R. The η(R)-system provides a family of extensions that
satisfy the orthogonality condition (3): η(u) = a1u

1 + a2u
2 +G(u3). Obviously, any

function η(u) satisfies the full condition (2) and, hence, is an extension.

Example 3. For the non-rich frame r1 = (−1, 0, u2 +1)T , r2 =
(

u3

(u2)2−1 ,−1, u1
)T
,

r3 = (1, 0, 1− u2)T , we solve the f(R)-system and obtain a family of fluxes:

f(u) = c1

0@ u3 − u1 u2 − u1

1
2
(u2)2 − u2

(1 + u2) (u1 − u1 u2 − u3)

1A+ c2

0@ u1

u2

u3

1A+

0@ c3
c4
c5

1A ,

which is, up to a trivial flux, depends on one constant. Using (14)2, we find that
λ1 = c2 − 2 c1, λ2 = c2 + c1 (u2 − 1) and λ3 = c2. Observe that there are strictly
hyperbolic system with this frame. Solving the η(R)-system, we obtain a family of
extensions

η(u) = a1u
1 + a3u

3 +G(u2),
depending on one arbitrary function. These are all the possible extensions of a
strictly hyperbolic system with the given frame. From (21)2, we find that β1 = β3 ≡
0 and β2 = G′′(u2).

Example 4. For the non-rich frame r1 = (1, u2, 0)T , r2 = (u3, 1, 0)T , r3 =
(0, 0, 1)T , we solve the f(R)-system and obtain a family of fluxes:

f(u) = c1
(
u1, u2, F (u3)

)T
+ (c2, c3, c4)T ,

which is, up to a trivial flux, depends on one arbitrary function of one variable.
Using (14)2, we find that λ1 = λ2 = c1 and λ3 = F ′(u3). Therefore, there are
no strictly hyperbolic system with this frame. Solving the η(R)-system, we obtain a
family of extensions:

η(u) = a1u
1 + a2u

2 +G(u3).
which satisfy the orthogonality condition (3). Note, however, that there may be
other extensions that satisfy condition (2) due to equality of eigenvalues λ1 = λ2.

6. On Hugoniot loci and eigencurves for 3×3-systems. Together with [4, 5],
the analysis above provides detailed information about systems (1) with a given
eigenframe: the f(R)- and η(R)-systems provide the fluxes and entropies, while the
λ(R)- and β(R)-systems tell us how many such there are. Note that prescribing R
amounts to prescribing rarefaction curves, and these make up one part of the wave
curves. The other part is the Hugoniot locus H. For a given flux f and state ū ∈ Ω,

Hf,ū := {u ∈ Ω | ∃ s ∈ R such that s(u− ū) = f(u)− f(ū)}.
To complement our analysis above, it would seem natural to ask: “Given a family
of curves in Ω, what is the set if systems (1) with these as Hugoniot loci?” However,
this is not a well-formulated problem: due to the symmetry relation “v̄ ∈ Hf,ū ⇔
ū ∈ Hf,v̄” it is hard to prescribe a family of curves that could be Hugoniot loci.
Unless, of course, one starts with the Hugoniot loci of a given system (1). Thus, the
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natural complement to our earlier analysis is to ask: “Given a hyperbolic system
(1), what other systems have the same Hugoniot loci?”

We shall describe a partial result for 3× 3-systems in this direction. First, there
are simple examples showing that conservation laws with the same eigenframe does
not, in general, share the same Hugoniot loci. This is not surprising since Hf,ū
depends on all of f , and not only its eigenframe. However, we have the following:

Proposition 4. Consider a strictly hyperbolic, non-rich 3×3-system (1). Then all
systems with the same eigenframe also have the same Hugoniot loci.

Proof. Let R be the eigenframe and g the flux corresponding to our system. The
case of a strictly hyperbolic non-rich system only occurs in the IIa subcase from
[4]. The proof of Theorem 3.2 in that paper invokes the Frobenius Integrability
Theorem to show that for any choice of the initial conditions λ2(ū) and λ3(ū) for
two of the eigenvalues, there is a unique Jacobian with the eigenframe R. Let A be
the Jacobian with eigenvalues satisfying initial condition λ2(ū) = 1 and λ3(ū) = 0.
Let a2 and a3 be the eigenvalues of Dg(ū) corresponding to r2 and r3. A direct
computation show that B = (a2 − a3)A+ a3 I is a Jacobian with with eigenframe
R and eigenvalues satisfying initial conditions λ2(ū) = a2 and λ3(ū) = a2. By the
proof of Theorem 3.2 in [4] it is the unique such Jacobian.

Thus the flux g must be of the form g(u) := (a2 − a3) f(u) + a3u + v̄, where
f(u) is a flux with the Jacobian A, and v̄ ∈ Rn is a fixed vector. Note that if
f(u) − f(v) = s (u − v), then g(u) − g(v) = [s (a2 − a3) + a3](u − v) and thus
the Hugoniot loci for f are Hugoniot loci for g. Since a2 6= a3, we can also write
f(u) = b1g(u)+b2u+v̄′ for some b1, b2, and v̄′, and determine by the same argument
that also the Hugoniot loci for g are Hugoniot loci for f . Thus all systems with this
eigenframe have the same Hugoniot loci.

To appreciate the relevance of this result, we recall (see Introduction) that given
frame in R3, there are only two possibilities for it to admit strictly hyperbolic
systems: either these are all rich, or they form a 1-parameter family (up to a trivial
flux). Thus, Proposition 4 applies to all systems in the latter 1-parameter class. In
particular, it applies to any system with eigenframe that of the full Euler system,
or that of the blowup examples in [1, 3, 6].
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