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ABSTRACT

A new integro-difterential invariant for curves in 3D transformed
by affine group action is presented in this paper. The derivatives
involved are of the first order, and therefore this invariant is signifi-
cantly less sensitive to noise than classical affine differential invari-
ants, the simplest ofwhich involves derivatives oforder 5. A classifi-
cation procedure based on characteristic curves of an object surface
is considered using our proposed mixed invariants. Substantiating
examples are provided to verify efficiency and discriminant power
of the characteristic spatial curve based 3D object classification.

Index Terms-3D affine transformation, affine invariant,
object classification, invariant feature

1. INTRODUCTION

acquisition systems and subsequenit emerginLg applications,
the interest has shifted to 3D integral invariants. To achieve
a trade-off between computational complexity of computa-
tion and numerical robustness, we derive a mixed integro-
differentical invariant, that depends on the first order deriva-
tives and integral variables.

In Section 2 we derive a novel mixed invariant, that de-
pends on the first order derivatives and integral variables. The
integral variables are 3D analogs of the potentials introduced
in [8] for plane curves. In Section 3 we discuss an appli-
cation of this invariants to extracted curve features from 3D
objects for a subsequent classifications applications. We pro-
vide some concluding remarks in Section 4.

2. MIXED INVARIANT

Curves and surtaces are the fundamental entities in shape/object
recognition problems in computer vision and pattern recogni-
tion. Their classification under Euclidean, affine, or projective
transformations is challenging. A direct comparison ofshapes
generally requires registration, and the ensuing complexity
and difficulty in its application in many important problems
have recently led to a renewed research interest in 'transfor-
mation invariant'.

Differential invariants, such as Euclidean curvature and
torsion for space curves, are the most classical. The affine
and projective counterparts of curvature and torsion may also
be defined. The practical utilization of differential invariants
is, however, limited due to their high sensitivity to noise.

This motivated the high interest in other types of invari-
ants such as semi-differential, or joint invariants [2, 7, 6] and
various types of integral invariants [3, 10, 8]. Lin and Hu[1 1]
extended the continuous integral to a discrete setting and pro-
posed a "Summation Invariant".

Integral invariants have advantage in applications, because
integration smoothes noise out and hence induces numerical
robustness. In particular these invariants were successfully
applied to face recognition [12].

Explicit expressions for integral invariants, however, ap-
pear to only be known for plane curves in 2D, and have thus
far remained elusive for spatial curves in 3Dc primarily due to
their complexity. With an increasing availability of 3D data
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Fels and Olver [4] [5] generalized Cartan's[l] method for com-
puting differential invariants, so that it become applicable for
computing various types of invariants. Hann et al [8] intro-
duced integral variables and used Fels and Olver construction
to derive integral invariants for curves in 2D. Lin et al [11]
implemented the algorithm by turning integrals into summa-
tions. In this section, we use Fels-Olver construction and the
3D analog of Hann-Hickerman integral variables, to derive
a mixed integro-differential invariant for curves in 3D trans-
formed by the affine group.

2.1. 3D Affine Transformation

The full affine group action on R' may be written as:

(x,y,z) (alix + a12Y + a13Z + a14, a2IX + a22y
+a23Z + a24, a31X + a32Y + a33Z + a34)

whereaij C2Rfori C l,2,3,4,j 1,2,3,4and

det
all
a21
(131

a12 a13
a22 a23
a32 a33 /

0.

This group action may also be represented by the matrix

all
a21
a3i
0

al2
a22
a32
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Our construction of invariants in the sequel will call on
pointwise definite integrals which will in turn require an ini-
tial point on a curve, which we denote by (xo Yo, zo). This
will, as a result, eliminate translation parameters by merely
readjusting every other point relatively to (Xo Yo, zo). The
simplified transformation may thus be written as:

( x

y ) a1l a12 ala
a2l a22 a2a
a3l a32 a3a

X

y (1)

This simplification will help reduce the total number of
parameters and hence ofthe number ofequations as discussed
next. Note that the invariant we obtain for this simplified
group can always be converted back to that of the full affine
group, by replacing (x, y, z) by (x- x, y-y,z-az).

quickly becomes intractable. As a tradeoff between the com-
putational complexity of solving the system of equations to
obtain an integral invariant, and the numerical sensitivity of
differential invariants to noise, we obtain a hybrid invariant
which utilizes first order (least sensitive to noise) derivatives
and integral auxiliary variables.

To this end we prolong the action to R6 parametrized by

(Xy,y'z 'Z/Ir,sItu,vw Im,n,o,p,q),

where

Y'
dy , dz
dxv dx'

We use explicit formulas for the transformations of variables

(XI z z' r t,q) u rstg u q)

2.2. Extending Group Actions

Differential invariants for curves in IR' are obtained by pro-
longing the group action on JRf to the jet space jk, parametrized
by coordinates of the curve and their derivatives up to the or-
der k. To obtain an invariant the total number of variables
should exceed the dimension ofthe group.

Han et al [8] prolonged the action to integral variables,
called, potentials, and derived the integral invariants for curves
in 2D. A similar approach may be adopted for a 3D setting.
To that end, we define potentials Di' 'k, Hi k andL.' k of
order 1 as:

J9i2k j kdxj +
k 0O

Hik = x jzk dy i + k 0O
LJk = f zdz, i + j 0O

wherei + + k = 1.
By factoring out the translation, we reduced the action

linear group ofdimension 9. The potentials up to second order
are sufficient to obtain an invariant. We define the following
integral variables,

r = D0 10, s D0 1 0, t H001, u = D1 1 0

a DL,01 w-D0 l 1 m-H10 a -H01lo, w_Do,'' n, D H

_ o," p =_D q Do

which are omitted due to space limitations, except for , y, z
given by (1) above and q given by (2) below.

2.3. Affine Invariant in 3D Space

Following Fels-Olver procedure we choose a valid cross-section

(xw y ,,r5, t', az/u) (00 1, 1, 1, 1, 1, 1,0).

We then solve equations

(x,y zr,s,t,y,z,) (0,0,1,1,1,1,1,0)

to find the group parameters parameters

(all, a12, 13, a2l, a22, a23, a3l, a32, a33)

that bring an arbitrary point to the cross-section.
The solution is shown in Appendix A. The mixed integro-

differential invariant is obtained by substitution of those ex-
pressions into the remaining non-normalized variable:

q a (1/3a312x3 +a322p + a33 q + 2 a31a32a
+ 2a3la33V+ 2 a32a33W) + a12(a3 2 (X2Y-2 u)
+ 1/3 a32y23 + a332 (yz2 - 2o) + a3la32 (xy2 _ p)

+ 2 a3la33TTI+ 2 a32a33n) + a13(a3l2 (x2z-2 v)
+ a322 (y2 _ 2 n) + 2 a3ia32 (xYz-m -w)
+ a3 a33 (X 2 _q) + 1/3 a332Z3 + 2 a32a330)

2.4 An Example

The affine action is prolonged to these variables and Fels Consider two 3D spatial curves Fig. 1L-a and Fig. 1-b for com-

Olver method is applied for finding invariants in R 14 parametrized parison. Fig. 1-b is related to Fig. 1L-a by a full affine trans-

by formation. Since the invariant is a ratio its value blows up
at the points on the curve where the denominator is zero.

x.y, r, ~. t, a, v, w. ox, a, o,p, We selectively remove all numerical instability arournd these
Solving the resulting system of equations for all group points.The result is shown in Fig. 2. No obvious deviation

parameters in this space, as required by Fels-Olver method, between the two invariants can be detected.
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Fig. 1. (a)3D curve 1 (b)3D curve 2

Fig. 3. 3D models from The Princeton Shape Bench-
mark(Best visualized in color)

Fig. 2. the mixed invariantfor curves 1 and 2

3. 3D OBJECTS CLASSIFICATION

A problem of curve comparison under affine transformations
arise in many applications, in particular in biometrics [12] and
3D object clustering. In the present example, we consider
application to classification of 3D objects based on a set of
characteristic spatial curves.
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Fig. 4. 3D spatial feature curves
3.1. Experimental Design

The Princeton Shape Benchmark[13] provides a repository of
3D models. A subset of four models are shown in Fig. 3.1.
We may assume that the characteristic curves have already
been extracted from 3D models in Princeton Shape Bench-
mark, as shown in Fig. 4. There are totally 50 characteris-
tic curves, and each of them are re-sampled to 5000 points.
Apply 10 randomly generated 3D affine transformations to
these curves, and 10 variations for each curve are generated
(Fig. 5)1. The problem is to classify all of these curves. To
make this problem even more challenging and to illustrate the
noise sensitivity, gaussian noise with distribution Nl(0, o2) iS
added to each of the variation.

The discrimination power and. sensitivity to noise are an-

alyzed using the error rate of classification of the proposed
mixed invariant and classical differential invariants, called affine
curvature, are compared. (See L9] for the expression of the
affine curvature in terms of the Euclidean invariants). Two
sets are required for classification purpose namely training
set and classification set. The training set is obtained by ran-
domly selecting three variations out often from each charac-

These curves would undergo such transformations when the 3D object is
subjected to a trantsormation.

teristic curve. The 7 left for each characteristic curve automat-
ically form the testing set. Such a classifier is implemented as
a Nearest Neighbor (NN) Classifier in Euclidean Space using
a L2 distance as a metric.

3.2. Experimental Results

Two experiments are carried out with different noise variance,
namely o = 0.1 and a = 1. The error rates of the two sigma
settings are shown in Table.l.

Due to higher order derivatives in differential invariants,
the error rates are over 60%, which makes the differential in-
variants practically useless. With only the first order deriva-
tives and integrals, the Mixed Invariant reduces the error rate
dramatically from 60% to 10% and provides a practical so-
lution to classify curves under affine transformation. But the

Table I. error rate
Mixed Invariant Differential Invariant

_ 0.1 00971 0.6086
= 1 0.1829 07314
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[6] M. Boutin, "Numerically invariant signature curves,"
Int. J Computer tision 40, pp. 235-248, 2000.

[7] P. J. Olver, "Joint invariant signatures, Found Comp. Math 1.
pp. 3-67, 2001.
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Fig. 5. 10 variations ofa curve under affine transformation

presence of the first order derivatives in the Mixed Invariant,
results in a modest increase of error rate as the noise variance
is increased by an order of magnitude.

4. CONCLUSIONS

In this paper, we presented a new mixed invariant for curves
in 3D with respect to affine transformation. This invariant de-
pends on the first order derivatives and integral variables. Our
future work will focus on obtaining invariants which are fully
integral which will in turn provide additional robustness. An
application to classification of characteristic curves of a 3D
object as they are subjected to random affine transformation
is considered.
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7. APPENDIX A

a1l = (6 ZT-6 zwy+ 6yo +3 z2p
_4 2 y2)TI4/ ((n1 + 2)n3 )

3y2q

a12 = (3 xqy + 6 uz2+ 6xrnz- 6vyz 52£
+6x20)T14/((Ta, + n2)n3)

a13 = (X2y2z 6uyz + 6nw2 3xpz + 6vy
-6wy -6mry)n4/ (((n + n2)n3)

31 = (y2z2 - 4Yy2Z _-y2XZI Z+ 2 yzrz' + '2yxz't
-4 yzt + yz2y/x + 6 y' syz + 4 rz' t + 4 t2

-2 ty' zx-4 y' st-4 y' z2r)/ (n3T14)

a32 = (z/yz + 6 sz/ yx-2 syz-3 yz2x- 4t2z/
-4 z' sr -2r z/ + 6tzx + 4rz
-4st + 4s2y/+ y' z2x2)/(n3n4)

a33

4 xsy'

(£2zy2- 3w2y/yz + 4x2ty'-44yz'r
-3 xy2z + 6xry' 6wyt- 2xysy' + 4r2z/
-6 rzy + 4 sy2+ 4rt 4 y'sr)/(n3n4)

ni -3 xz'p +3 z2p x2 /zy2 6 anx1q >lqzt C12/C

uy/Z/-6z'vy2+3y2q -w a2T

6w 'my 6 'WYr .

a2 Dy Zyy3y qy 6zwy 6y' U 6yox
6y zm + 6 z' zuy -6 y'2o -4 Z2wy2

16 xy)z-2tx+ 2y-2
n4 2y's +y '+yz 2r -2t- y' z
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