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ABSTRACT

A novel 3D face representation and recognition approach is pre-
sented in this paper. We represent a 3D face by a set of level curves
of geodesic function starting from the nose tip, which is invariant un-
der isometric transformation of the surfaces. A pose change induces
a special Euclidean transformation (a composition of a rotation and
a translation) of the surface that represents a face and leads to the
Euclidean transformation of the iso-geodesic curves. A change of fa-
cial expression induces isometric transformation of the iso-geodesic
curves. Although the set of isometric transformations of a surface
is larger than the set of Euclidean transformations in 3D, we assume
that iso-geodesic curves undergo piecewise Euclidean transforma-
tions, i.e. the transformation of relatively small segments of the
level curves is Euclidean. A Euclidean invariant integral signature
for curves in 3D is presented in this paper. Euclidean invariant inte-
gral signature provides a classification of spatial curves which is in-
dependent of their position in 3D space and parameterization, and is
not sensitive to noise. A recognition procedure based on comparing
face feature in the invariant signature space is proposed. Substantiat-
ing examples are provided with an achieved classification accuracy
of 95% for faces with various poses and facial expressions.

1. INTRODUCTION

Face recognition has been extensively studied for over 30 years, and
its complexity together with its relevance in security and surveillance
problems have recently led to a renewed research interest. Tech-
niques in 2D face recognition abound, and Zhao and Chellappa [1]
provide a fairly comprehensive account of the state of the art. Vari-
ation of lighting and pose in 2D face recognition are widely recog-
nized to be major impediments to the deployment of robustly per-
forming algorithms. Specifically, the performance of many existing
algorithms greatly deteriorates when the training and testing sets do
not share a significant number of common views and lighting condi-
tions. The recently developed 3D scanning techniques are believed
to provide a potential to alleviate the limitation due to lighting and
pose, and their rapid deployment would go far in paving the way
for a viable recognition system. Exploiting such data amounts to
extracting the intrinsic geometric information and utilizing it as the
basis for characterizing individual faces.

Recent research activity in 3D and multi-modal face recognition
techniques is reviewed in Chang ef al.[2]. We can distinguish two
main classes of data driven techniques:
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e A 3D (geometric-only) approach includes a curve and profile-
based description of a face by Nagamine et al.[5] and Bau-
mier [9], a volumetric approximative representation of a face
proposed by Irganoglu et al. [8], a Iterative Close Point based
algorithm by Cook et al. [7], a planer curve based method
by Samir et al [14], and a polar geodesic representation based
approach by Mpiperi et al [13].

A multi-model (geometric and photometric) approach includes
several PCA based methods. Chang et al.[3] implement PCA

to both 3D and 2D images, Tsalakanidou et al.[10] extract

depth and color eigenfaces, and Bronstein, Bronstein and Kim-
mel [6] use eigendecomposition of flattened textures and Mul-

tidimensional scaling (MDS)-based canonical images. Also

related is 3D Point Signatures and 2D Garbor Filter responses

based technique proposed by Wang [11]. Lu and Jain [12]

jointly exploit range and texture information with a Linear

Discriminant Analysis to construct a hierarchical system.

In this paper, we represent a face by a surface in 3D, and propose
in Section 2 a novel technique which bases an accurate description
of a face range image on a set of curves intrinsic to the surface. To
better contend with face pose and expression variability, we propose
in Section 3 the Euclidean an Integral Invariant Signature. The scale
independent Euclidean integral invariant signature that which pro-
vides a noise tolerant classification method for curves curves up to
rotation, translation and scale. Section 4 discusses the experiment
that verifies the robustness of the proposed classification approach
under affects of noise and change of facial expressions. The achieved
classification rate of 95 % which is promising. We provide the con-
clusion in Section 5.

2. FACE REPRESENTATION

General 3D object representation has been extensively studied, and
various approaches[16] have been proposed in the literature. When
faces are subject to transformations, especially Isometric transfor-
mation(under effect of pose and facial expression), most representa-
tions will vary for the same subject. It is well known that a Geodesic
distance between points on the surface is invariant to isometric trans-
formation. This property has been exploited in several approaches
[17] [23] [21][19],[26] and [6] , [14], [13] extend this idea to face
recognition since it is invariant to facial expression as verified in [6],
[13]. We adopt here the similar idea to guide the curve extraction,
and construct curve based 3D face representation.
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2.1. Geodesic Distance Function

Geodesic distance between two points on a manifold is the short-
est path between these two points along the manifold. Although
the Euclidean distance between two points may change under dif-
ferent facial expressions, the geodesic distance, only changes very
slightly[6], [13], and the changes may be ignored. We, hence, may
pre-define the nose tip as a reference point, and the Geodesic Dis-
tance Function(GDF) at any point on the 3D face is defined as the
geodesic distance between this point and the nose tip.

A practical problem is the movement of the mouth. Opening
mouth may generate a hole, which changes the topology of the face.
The geodesic distance from the nose tip to the area under the mouth
may change as a result of the opening mouth. One possible solu-
tion is suggested in [6] to remove the mouth region, and we always
assume there is a hole. Here we adopt this idea. A mouth is easy
to locate with texture information, and the test data we are using
provides both the geometrical and texture information. Using level
set approach, the mouth region may be located and removed from
the face. We omit the details of this technical approach for it is not
essential to our work and for space reasons.

Fig. 1. 3D faces

The GDF of several faces in Fig. 1 are shown in Fig. 2 (best
viewed in color). The color of the object in Fig. 2 indicates the GDF
value at each point on the surfaces of the object.

il

Fig. 2. Geodesic Distance Function of 3D faces

2.2. Iso-Geodesic Curves

GDF (denoted as g) is a continuous function on the surface of an
object. Within the surface, iso-geodesic curves of level ¢ are defined
as curves satisfying the following condition:

9(z,y,2) = c.

Let n be the total number of iso-geodesic curves extracted from
a face. In our current approach, we set maximum level ¢, to be
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the curve passing the outer corner of the eyes, so that we are only
focused on the n curves from the nose tips to the outer corner of the
eyes, which covers most of the region of interest in 3D faces.

For a triangulated meshed surface, the vertex with the exact level
¢ may not exist. However, under a reasonable assumption that the
GDF is a linear function along each edge, the vertex with exact level
c may be interpolated linearly. Specifically, it follows two steps:

1) Locate the edge

For any edge starting from v, and ending at ve, calculate:

5 = (gn(vs) = c)(gn(ve) — )

Under the linearly increasing assumption of a GDF, it is easy to see
that ¢; is located on the edge where S < 0.

2) Locate the vertex by linear interpolations

Once an edge is selected in step 1, the exact location of a vertex
may be linearly determined as:

¢ — gn(vs)

= an(00) — gn(wn) e T T

Ve

The iso-geodesic curves at level ¢ may be generated by con-
necting the vertices on the same face and nearby faces sharing the
same vertex. Several examples of iso-geodesic curves of surfaces
are shown in Fig.3 as space curves in 3D. Each color indicates one
level ¢; = c¢,i/n for a total of 20 levels(we chose n
i =1,2,...,n in our current experiment.

20) and

Fig. 3. Iso-Geodesic curves of 3D faces

3. INVARIANT FEATURES

The Iso-geodesic curves capture the same sets of points on a face un-
der different pose and facial expression. As such, it is a robust repre-
sentation of 3D faces, and the face recognition may be done by com-
paring the space iso-geodesic curves. Space curves undergo transfor-
mations, which makes the comparison difficult. A direct comparison
of curves, such as shape matching, generally requires registration,
which is complicated and difficult in its application in many impor-
tant problems. Geometric Invariants have as a result been of great
research interest.

The classical Euclidean Differential invariants are the Curvature
and Torsion, whose practical utilization is limited due to their high
sensitivity to noise. To smooth noise out, a variety of integral in-
variants [24, 22, 20] are proposed. Among them, [22] developed
a robust integral invariant signature in 2D, which is independent of
parametrization and initialization of curves. Inspired by [22], we
developed Euclidean Integral Invariant Signature in 3D.




3.1. 3D Integral Invariant Signature

For a closed/open space curve in 3D, the scaling effect may be can-
celled by normalizing the total arc-length to be 1. Similarly to [22],
we also focus on local regions to make the signature independent of
the starting point of a curve. The local regions are obtained by divid-
ing a curve into small segments of equal arch length. To construct
a signature, two invariants are required for each segment. However,
the area criterion in [22] is not easily defined for space curves in
3D, requiring us to adopt a different strategy, namely the Moving
Frame approach [15]. We use Fels-Olver [15] construction and the
3D analog of Hann-Hickerman integral variables[20], to derive inte-
gral invariants for curves in 3D subjected to the Euclidean group.

3.2. 3D Euclidean Transformation

The rotation group action on R® may be represented by the matrix:

where ¢ 4+ j + k = [ and ¢ is the parameter for a curve, such as arch
length.

By factoring out the translation, we reduce the action to the
group of rotation with dimension 3. We hence use the following
integral variables,

Z010, £100, Y100, 011 -

The Euclidean action is prolonged to these variables, and Fels-Olver
method is applied in order to find invariants in R®

(X7 Ya Z7 ZOIO, ZlOO, Y1007 ZOll)-

3.4. Euclidean Invariant in 3D

Following Fels-Olver procedure we choose a valid cross-section
(Y, Z, Zo11) = (0,0,0).

We next solve the transformed equations
(Y, Z, Zon1) = (0,0,0)

to find the three group parameters parameters

(0,6,9)

that bring an arbitrary point to the cross-section.
The Euclidean Integral Invariants are obtained by substitution of

1 0 0 cos(¢) 0 sin(¢p) -|
R=1| 0 cos(yp) —sin(y) | x 0 1 0
{ 0 sin(y)  cos(y) J L —sin(¢) 0 cos(®) J
[ cos(0) —sin(0) O
x | sin(@) cos(@) O |,
Lo 0o 1
yielding a 3D Euclidean Transformation from (, 7, z) to (2., ye, z) those parameters into X and Zoo:
as
Te T te
Ye =Rx| y |+ ty
Ze z ty

Our construction of invariants depends on line integrals. An ini-
tial point on a curve denote by (o, Yo, 20), is necessary. This will,
as a result, eliminate translation parameters by merely readjusting
every other point relatively to (xo, Yo, 2z0). Automatic selection of
an initial point for a closed curve may required additional process-
ing. Fortunately, we are dealing with open segments , whose end
point can easily serve as the initial point. And the Euclidean trans-
formation is hence reduced to a rotation:

where X =x —x0, Y =y — y0, Z = z — 20.

3.3. Extending Group Actions

To detive the invariants, we first prolong the action of the group to
integral variables, called, potentials. Similar potentials were intro-
duced by Han et al [20] in 2D, which we extend into 3D by defining:
Xijk, Yijr and Z;j;, of order [ as:

Xijk = /t X' (6)Y! (1) 2" (1)dX (1), + k # 0
Yijk = /t X' (Y () ZF®)dY (£),i+k #0

Zijk = /t X (Y () ZF(#)dZ(t),i+7#0
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i1 = X=VX24+YV24 22
: . (XY Z —2XZowo +2Y Zioo — 2 ZY100)°
2 = Zowo =

WXTLYZ L 22

Simplifying 7, and iz yield two Euclidean Invariants [ and I5:

L = ’L‘1:VX2+Y2+Z2

I VAairio = XY Z —2XZo10+2Y Z100 — 2 ZY100

Since one end of the segment coincides with the origin, /; is the
Euclidean distance between two end points. Instead of area in [22],
I is some volume defined for the segment.

The integral signature of a space curve in 3D is the variation
of one independent invariant /;, evaluated on the curve, relative to
another /5.

(a) (b)
Fig. 4. (a) original curve (b) transformed curve

The signature of two versions (in Fig. 4) of a curve under Eu-

clidean transformation is shown in Fig. 5.

For curves under isometric transformation, such as iso-geodesic

facial curves, we may assume that most segments are locally under
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Fig. 5. Integral Invariant Signature

Euclidean transformation locally. In this case, we can still use the
integral invariant signature to characterize surfaces. The Euclidean
transformed segment will display a similar signature. The only dif-
ference will be in the isometric transformed segment. For example,
the signatures of the two curves in Fig. 6 are shown in Fig. 7. We
may notice that most parts of the signature are overlapped. The only
difference near the star correspond to the articulate regions in Fig. 6.
Any similarity measurement may indicate that these two signatures
are highly similar.

0.5—

—05—]

Fig. 6. Curves undergoing isometric transformation

3.5. Curve Matching

With the integral invariant signature, the space curves in 3D are
mapped to the 2D invariant space, where there is no transformation
effects, and matching space curves under transformation in 3D is re-
duced to matching signatures. A signature curve is parameterized by
arch-length starting at the min (/1) point, and the signature may be
represented by a vector. The cosine similarity is used to measure the
similarity between signatures. And the similarity between objects is
the sum of similarities between sets of curves.

4. EXPERIMENTAL RESULT

The experimental data we are using in this paper is FRGC2[25]. The
data from spring 2003 are the training set, which contains 222 sub-
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Fig. 7. Signature for Curves undergoing isometric transfor-
mation

jects, and the number of scans of each subject varies 1 to 10. The
data from the same 222 subjects are selected from spring 2004, serv-
ing as testing data. The number of 3d scans per subject varies from
1to12.

Following the procedures in the above two sections, each face
is represented by 20 curves and the signature of each curve is con-
structed and sampled to a 200 dimensional vector. The cosine simi-
larity between the corresponding signature is calculated as the simi-
larity measurement. In this experiment, we use One Nearest Neigh-
bor classification rule, and the accuracy is 95%, which is numerically
comparable with most recently proposed geometry driven techniques
in FRVT 2006 Large-Scale Results. By using the integral invari-
ant signature, we successfully avoid the time consuming registration
procedure, which makes it a fast real time system in theory.

5. CONCLUSIONS

In this paper, we presented a new geometric invariant-based method
for 3D face recognition. Each face may be represented by 20 iso-
geodesic curves, which gives us a systematic way to capture the
same sets of points under iso-metric transformations. The pose and
facial expression effect may be eliminated by mapping the space
iso-geodesic curves to Euclidean integral invariant signature space.
Substantiating examples are provided with an achieved classification
accuracy of 95%.
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