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ABSTRACT
In this paper we conduct a careful study of the equiva-
lence classes of ternary cubics under general complex lin-
ear changes of variables. Our new results are based on the
method of moving frames and involve triangular decompo-
sitions of algebraic varieties. We provide a computation-
ally efficient algorithm that matches an arbitrary ternary
cubic with its canonical form and explicitly computes a cor-
responding linear change of coordinates. We also describe a
classification of the symmetry groups of ternary cubics.

Keywords. Method of moving frames, classical invariant
theory, ternary cubics, elliptic curves, systems of algebraic
equations, triangular decompositions.

1. INTRODUCTION
One of the central problems of classical invariant theory is
the equivalence and symmetry of multivariable polynomials
under linear changes of variables. The standard action of the
general linear group on the m dimensional complex linear
space C

m induces an action F → F̄ on the linear space of
polynomials C[x] defined by

F̄ (g · x) = F (x), (1)

where g ∈ GL(m, C), x ∈ C
m and F, F̄ ∈ C[x] are polyno-

mials in m variables.

The set of homogeneous polynomials of degree n is mapped
to itself under the GL(m, C) action defined by (1). Two
polynomials are said to be equivalent if there is a linear
change of variables that transforms one into the other. The
group of symmetries of a polynomial consists of all linear
changes of variables that leave the polynomial unchanged.
It is desirable to describe the classes of equivalent polyno-
mials, or, in other words, classify the orbits of the action of
a general linear group on the linear space of polynomials.

In this paper we consider ternary cubics, that is, homoge-

neous polynomials in three variables of degree three. Their
classification is well known, see for instance [22], [16]. In
each orbit we identify a “simple” canonical form and pro-
vide an algorithm, that matches an arbitrary cubic with its
canonical form. A corresponding linear change of variables
is computed explicitly. Note that the most naive approach
to the latter problem, solving (1) for the group parameters,
requires very hard computations. Our algorithm is based on
the novel differential geometry approach first introduced by
Olver [28]. The solution of the equivalence problem over real
linear transformations can be approached by similar tech-
niques but is more subtle. We will indicate how to adapt
our new results to the real case in a future paper.

Polynomials of degree n in m variables form a linear space
W of dimension

`

m+n−1
n

´

isomorphic to the n-th symmetric
tensor product of C

m. The coefficients of polynomials can
serve as coordinates on this space and formula (1) induces an
irreducible representation of GL(m, C) on W . One can try
to classify polynomials by computing continuous invariants,
that is, functions H(. . . , ai1,...,im , . . . ) in the coefficients of a
polynomial, invariant under the action (1). However, the ac-
tion (1) is not regular: the dimensions of the orbits vary and
all orbits, except the orbit of the zero polynomial, are not
closed. Hence the orbits can not be distinguished by contin-
uous invariants. More information can be obtained from co-
variants, H(x, . . . ,ai1,...,im , . . . ), continuous functions that
are invariant under the simultaneous action of the general
linear group on the variables and the coefficients of polyno-
mials. The simplest example of a covariant is the polyno-
mial F (x) itself (see formula (1)). Computation of rational
invariants and covariants, as well as polynomial relations, or
sysygies, among them is the main subject of the nineteenth
century classical theory. The overview of the classical meth-
ods for constructing rational covariants as well their applica-
tion to the classification of polynomials can be found in [12],
[16], [28]. A set of rational covariants is called fundamental
if any other rational covariant can be expressed as a rational
function of the fundamental ones. The existence of a finite
fundamental set of covariants follows from the finite basis
theorem for the actions of linear reductive groups proved by
Hilbert in 1890 [1]. The number of fundamental covariants,
however, grows dramatically, with the increase of the degree
of polynomials even for a fixed number of variables. The
Hilbert’s proof of the finite basis theorem became a turning
point from classical computational approach in the invari-
ant theory to its modern formulation in terms of algebraic
geometry [25], [22], [31] and representation theory [17].



Despite the enormous amount of results obtained by clas-
sical and modern methods, the general classification of ho-
mogeneous polynomials and their symmetry groups remains
unknown even for the case of polynomials in two or three
variables (over C or R) except for polynomials of low degree.

The main idea of moving frame approach, appeared in [28],
is to consider the graph of a polynomial F (x) in m vari-
ables as a submanifold in (m + 1)-dimensional complex (or
real) space therefore reducing the question to equivalence
problems for submanifolds. The latter problem can be re-
solved by Cartan’s method of moving frames, which involves
computation of a fundamental set of differential invariants.
We note that, in contrast with the classical approach, a set
of differential invariants is called fundamental if any other
differential invariant can be at least locally expressed as a
smooth function of the fundamental ones. Fundamental dif-
ferential invariants parameterize the signature manifold, or
the classifying manifold, of F [27]. Two equivalent poly-
nomials have the same signature manifold. Moreover the
signatures can be used to determine the symmetry groups
(see Section 5) and to describe the geometry of the orbits
for the GL(3, C)-action on the linear space of polynomials
(see Section 4).

In the joint paper by Peter Olver and the first author [3]
the moving frame method has been applied to polynomials
in two variables (binary forms). A Maple package which
determines the dimension of the symmetry group of a given
polynomial and, in the case when the symmetry group is
finite, computes it explicitly has been provided. Computing
differential invariants becomes more challenging for the ho-
mogeneous polynomials in more than two variables, even in
the next case of polynomials in three variables. This work
has been completed by the first author in her thesis [20],
using the inductive moving frame construction presented in
[21]. These invariants were used to classify the symmetry
groups for ternary cubics and to solve some equivalence
problems. For instance, a necessary and sufficient condi-
tion for a homogeneous polynomial in three variables to be
equivalent to xn + yn + zn was computed in [20] and [30].
The general problem of expressing a binary or higher order
form as a sum of powers of linear forms has applications in
signal processing and is discussed in [8], [29].

To the advantage of the moving frames approach, it is ap-
plicable to polynomials of any degree in any number of vari-
ables, as well as one can consider various group actions.
Moreover, one can use the same invariants for polynomials
of any degree, as long as the number of variables and the
group action remain the same. In practice, however, we are
confronted with challenging elimination problems for multi-
variable polynomials, not solvable by the standard algorithm
based on Gröbner bases computations. The results for the
case of ternary cubics, presented here, were obtained by us-
ing triangular decompositions. More precisely, the compu-
tations of the signature manifolds of the canonical ternary
forms were obtained by means of the PARDI algorithm by
Boulier, Lemaire and the second author [4]. The justifica-
tion of these computations follows from the theory of regular
chains introduced by Kalkbrener [18] and its recent develop-
ments ([2], [5]). The linear transformation from an arbitrary
ternary cubic into its canonical form involves the triangular

decomposition algorithm by the second author [24] and its
implementation in Aldor [6].

The paper is organized as follows.

Section 2 contains a formulation of the equivalence and
symmetry problems for multivariable polynomials un-
der linear changes of variables together with a descrip-
tion of the equivalence classes of ternary cubics under
this action.

Section 3 contains a derivation of a moving frame and the
corresponding differential invariants for the action con-
sidered in the previous section. These invariants are
not rational. However we use them to build a new
set of fundamental rational invariants which leads to
exceptionally simple signature manifolds.

Section 4 describes the signature manifolds for each of the
equivalence classes. We also make some observations
about the geometry of the orbits.

Section 5 contains an algorithm for computing the sym-
metry groups listed in the previous section.

Section 6 provides an algorithm that matches an arbitrary
ternary cubic with its canonical form and computes a
corresponding linear change of coordinates.

2. EQUIVALENCE AND SYMMETRY
We consider the action of the general linear group on the
space of polynomials over C in m variables:

F̄ (g · x) = F (x), equivalently F̄ (x) = F (g−1x) (2)

where g ∈ GL(m, C), x ∈ C
m and F, F̄ ∈ C[x],.

Definition 1. A polynomial F is said to be equivalent
to a polynomial F̄ if there exists g ∈ GL(m, C) such that
F̄ (g · x) = F (x). In this case we will also write F̄ = g · F

Example 1. The polynomial x3 +y3 +z3 is equivalent to
x3 +6 x y2−6x y z−3 y2 z +3 y z2 under the transformation

x 7→ x − y; y 7→ x + y − z; z 7→ z − x.

Definition 2. The symmetry group of F is the subgroup
GF ⊂ GL(m, C) consisting of all linear transformations that
map F to itself.

Example 2. The symmetry group of the cubic
z (x2 + y z) is a two-dimensional noncommutative (affine)
group, generated by two linear transformations:

0

@

1 0 α
−2α 1 −α2

0 0 1

1

A and

0

@

β
β4

β−2

1

A .

We note that the symmetry groups of equivalent polynomi-
als are related by matrix conjugation:

F̄ (x) =F (g · x) =⇒ GF̄ = gGF g−1. (3)



Thus the problem of the classification of polynomials is close-
ly related to the problem of the classification of their sym-
metry groups up to matrix conjugation. In Section 5 we
describe an algorithm (first appeared in [28] and used in
[20]) to determine the dimension of the symmetry group of
a given polynomials and, in the case when the cardinality of
the symmetry group is finite, to compute its order.

We focus on homogeneous polynomials of degree three with
three variables, also called ternary cubics. We reproduce be-
low the known classification of ternary cubics up to a linear
transformation ([16], [22]). We start with irreducible cubics.
A non-singular projective variety V defined by an irreducible
ternary cubic F (x, y, z) over C is an elliptic curve. Elliptic
curves are well studied and of great importance in number
theory and the theory of modular forms ([19], [23]). The
canonical form, also called Weierstrass normal form, can be
obtained by transforming one of the inflection points of V to
the infinite point (0, 1, 0), and the tangent line at this point
to the line (k, 1, 0) at infinity [19].

Theorem 1. An irreducible cubic F (x, y, z) can be trans-
formed under a linear change of variables to one of the fol-
lowing forms:

1 If F (x, y, z) defines a nonsingular projective variety then
it either equivalent to:
a) a cubic in one-parametric family:

x3 + ax z2 + z3 − y2 z,

where a 6= 0 (otherwise it is an irreducible cubic of type
c) below) and a3 6= −27/4 (otherwise it is equivalent
to the reducible cubic of type b) below).
or either

b) x3 + x z2 − y2 z or c) x3 + z3 − y2 z.

2. If F (x, y, z) defines a singular projective variety then it
is equivalent to either

a) x3 − y2 z or b) x2(x + z) − y2 z.

Theorem 2. A reducible cubic F (x, y, z) is equivalent un-
der a linear change of variables to one of the following forms:

1. If it is a product of quadratic and linear factors then it
is equivalent to either

a) z (x2 + yz) or b) z (x2 + y2 + z2).

2. If it is a product of three linear factors and

a) three factors are linearly independent factors, then
the cubic is equivalent to xyz.

b) three factors are linearly dependent, but any pair
of them is linearly independent, then the cubic is
equivalent to xy(x + y);

c) two factors are the same, then the cubic is equiva-
lent to x2y;

d) all three factors are the same, then it is equivalent
to x3;

The classification of reducible cubics can be obtained by very
elementary methods [20].

In the next two sections, we address the problem of matching
a cubic F with one of the canonical forms listed above. Once
the canonical form F̄ is identified, we would like to determine
a linear transformation such that F̄ = F (g · x). The most
straightforward approach, solving the equation

F̄ (x, y, z) = F (αx + βy + λz , γx + δy + µz , ax + by + ηz) .

for the group parameters, turns out to be computationally
impractical. We propose a practical solution in Section 6.

3. DIFFERENTIAL INVARIANTS AND
SIGNATURE MANIFOLDS

The classification algorithms presented in the next sections
are based on the moving frame method first developed by
E. Cartan [7] for the solution of equivalence and symmetry
problems in differential geometry. We refer the reader to
the above reference as well as to [15] for the classical formu-
lation of the method, and to [11], [14], [13] for its modern
algorithmic formulation. In this section we implement the
inductive variation [21] of the moving frame algorithm, pre-
sented in [11], to compute a fundamental set of differential
invariants for ternary cubics.

Following the ideas of [28], we consider the graph of a homo-
geneous cubic polynomial u = F (x, y, z) as a smooth three-
dimensional submanifold in C

4. Coordinate functions in C
4

are chosen to be (x, y, z, u). A group element

g =

0

@

α β λ
γ δ µ
a b η

1

A ∈ GL(3, C) (4)

acts on C
4 by leaving coordinate u unchanged and trans-

forming linearly x, y, z:

u → u ,
0

@

x
y
z

1

A →

0

@

α β λ
γ δ µ
a b η

1

A

0

@

x
y
z

1

A . (5)

The graph ΓF of u = F (x, y, z) is transformed under this
action to the graph g · ΓF of

u = F
“

α̃ x + β̃ y + λ̃ z , γ̃ x + δ̃ y + µ̃ z , ã x + b̃ y + η̃ z
”

,

(6)
where α̃, . . . , η̃ denote the entries of the matrix g−1. In or-
der to reduce the dimension of the jet spaces which will
be introduced below, we prefer to work with inhomogeneous
(projective) version of F , the unique polynomial in two vari-
ables p, q defined by:

f(p, q) = F (p, q, 1). (7)

For example, the polynomial f(p, q) = pq is the inhomoge-
neous version of the cubic F (x, y, z) = xyz. We note that
the degree of f is less than or equal to three, but we keep
referring to f as a cubic, since the knowledge of the initial
degree is necessary to restore F from f :

F (x, y, z) = z3 f
“x

z
,
y

z

”

.



We consider the graph Γf of the polynomial u = f(p, q) as
a surface in the three dimensional complex space. From (6)
and (7) we deduce that Γf is transformed to the graph of:

u =
“

ã p + b̃ q + η̃
”3

f

„

α̃ p + β̃ q + λ̃

ã p + b̃ q + η̃
,
γ̃ p + δ̃ q + µ̃

ã p + b̃ q + η̃

«

.

(8)
This corresponds to the following local action of GL(3, C)
on C

3, defined at each point for the group elements that do
not allow the denominator vanish.

u → ū = (a p + b q + η)−3 u,

p → p̄ =
α p + β q + λ

a p + b q + η
, (9)

q → q̄ =
γ p + δ q + µ

a p + b q + η
.

The application of the moving frame method is justified by
the following simple proposition:

Proposition 1. Two homogeneous cubics F (x, y, z) and
F̄ (x, y, z) are equivalent under a linear change of variables
(see Definition 1) if and only if the graph u = F (x, y, z)
in C

4 can be mapped to the graph u = F̄ (x, y, z) under the
transformation (5) or, equivalently, the graph u = f(p, q)
in C

3 of the inhomogeneous version of F can be mapped to
u = f̄(p, q) by (9).

The first step is to prolong the graph u = f(p, q) and the
group action to the jet space of smooth functions in two
variables. In our case the n-th jet space Jn is a (n2+3n+6)-
dimensional complex space parameterized by coordinates
(p, q, u, u1,0, u0,1, . . . , ui,j , . . . u0,n), where i + j ≤ n and ui,j

are formal coordinates that correspond to all possible partial
derivatives of u with respect to p and q. Given a particular
polynomial f(p, q), one can actually compute these deriva-
tives in order to obtain a two-dimensional surface in Jn:

u = f(p, q), ui,j =
∂i+ju

∂ip∂jq
, (10)

which is called n-th prolongation of the graph u = f(p, q)

and is denoted by Γ
(3)
f . We note that since f is a polynomial

of degree 3, all the derivatives of order higher than three are
zero, and thus one can solve the equivalence problem on the
third order jet space J3 of dimension 12.

Remark 1. Not every two-dimensional surface in J3 cor-
responds to a prolongation of a cubic polynomial f . In fact
there is one and only one such graph passing through every
point of J3. Remarkably, when polynomials of an arbitrary
degree n are considered, one does not need to prolong the
graph up to the order n to solve the equivalence and symme-
try problems, but at most up to the order 6. Although there
are several prolonged graphs of polynomials of degree > 6
passing through a point in J6, there is at most one polyno-
mial from each equivalence class passing through each point.

That is, if Γ
(6)
f and Γ

(6)
g·f are passing through the same point

in J6, then f = g · f (see rigidity theorems [11] Sect. 14).

The next step is to prolong the action (9) to the jet space J3,
that is, to define a transformation for the coordinates ui,j , in

a way that it commutes with the process of the prolongation
of the graph (10). According to [11], [26] Chapter 2 this can
be done in the unique way:

ui,j → Di
p Dj

q(ū),

where Dp and Dq are differential operators defined by:

Dp = C

„

(p A + δ η − b µ)
d

dp
+ (q A + a µ − γη)

d

dq

«

,

Dq = C

„

(p B + β η − b λ)
d

dp
+ (q B + a λ − αη)

d

dq

«

,

where C = a p+b q+η
det(g)

, A = δ a − γ b and B = β a − α b .

For example, u1,0 is transformed to

Dp(ū) =
−3A u + (p A + δ η − b µ) u1,0 + (q A + a µ − γη) u0,1

(a p + b q + η)2 det(g)
.

To avoid long and, in fact, unnecessary formulae we will
denote the rest of the transformations symbolically:

ui,j → ūi,j = Φi,j(u
(3), g), (11)

where 0 ≤ i + j ≤ 3 and Φi,j are smooth functions of the
groups parameters (4) and coordinates of J3.

An important observation is that the action of the group
G = GL(3, C) is locally free on J3, which means that the
stabilizers of each points are discrete. In fact, the isotropy
group of a generic point consists of three matrices in the
complex case and of identity matrix only in the real case.
It follows that each orbit is locally diffeomorphic to G and
thus has dimension equal to dimG = 9. One can find a
cross-section K to the orbits, that is, a submanifold in J3

of dimension 3 = dimJ3 − dimG, that is, transversal to the
orbits and intersects each orbit in an open subset of J3 once.
It turns out that the submanifold

K = {u(3) ∈ J3|p = 0, q = 0, u = 1, (12)

u1,0 = 0, u0,1 = 0, u2,0 = 0, u0,2 = 0, u3,0 = 1, u0,3 = 1}
can serve this purpose on a dense subset of J3. Computa-
tionally it is reflected in the existence of a finite set of the
solutions of the following system (see (9,11)):

p̄ = 0, q̄ = 0, ū = 1, Φ1,0 = 0, Φ0,1 = 0, (13)

Φ2,0 = 0, Φ0,2 = 0, Φ3,0 = 1, Φ0,3 = 1.

for the group parameters at almost every point of J3. A
solution for this system yields a matrix g(u(3)) which maps

a point u(3) ∈ J3 to K under the prolonged transformation
(9, 11). The matrix-valued function g(u(3)), defined at al-
most each point of J3, is called a moving frame [11]. By

construction the map π(u(3)) = g(u(3)) · u(3) defines a pro-
jection π of J3 onto K along the orbits. In particular, one
can restrict π to the prolonged graph of u = f(p, q) defined
by (10), to obtain a projection πf : Γf → K. As the follow-
ing two theorems indicate the image of Γf in K , called the
signature manifold of f , provides the key to the solution of
the symmetry and equivalence problems.

Definition 3. The signature manifold Cf of a cubic poly-
nomial f(p, q) is the projection along the orbits of the third

prolongation (10) of its graph Γ
(3)
f to the cross-section K.



Theorem 3. Two cubics f(p, q) and f̄(p, q) are equiva-
lent under a linear change of variables if and only if their
signature manifolds coincide, Cf = Cf̄ .

For the absolute majority of cubic polynomials the projec-
tions of their two-dimensional graphs to K remains two-
dimensional, but some of the cubics, whose graphs are not
transversal to the orbits, will have the projections (signa-
tures) of a smaller dimension. The drop in the dimension of
the signature manifold reflects the increase in the dimension
of the symmetry group of f .

Theorem 4. The dimension of the symmetry group Gf

of f(p, q) equals to dim Γf − dim Cf = 2 − dim Cf .

See [11] (Theorems 14.7 and 14.9) and [27] (Theorems 8.19
and 8.22) for the proofs of Theorems 3 and 4 above. The
computation of the signatures relies on the solution of the
system (13) for the group parameters. However, the for-
mulae for Φi,j in the second or third order are too long and
frightening to approach. We can, however, split the problem
into three feasible sub-problems, by decomposing the matrix
of g into a product of three matrices g = HRT , where

H =

0

@

α β 0
γ δ 0
0 0 1

1

A , R =

0

@

1 0 0
0 1 0
a b c

1

A ,

T =

0

@

1 0 t
0 1 s
0 0 1

1

A .

We apply the inductive construction of moving frames [21],
[20] to this product and refer the reader to [20] for explicit
computations leading to the following results. Formulae

t = −p, s = −q, c = u1/3, a =
u1,0

3 u
2
3

, b =
u0,1

3 u
2
3

(14)

determine the matrices R and T . Solution for the parame-
ters of the matrix H is more complicated. We first introduce
the following functions on J3:

Q2,0 = u−
4
3

»

u2,0 u − 2

3
u2

1,0

–

,

Q1,1 = u−
4
3

»

u1,1 u − 2

3
u1,0u0,1

–

,

Q0,2 = u−
4
3

»

u0,2 u − 2

3
u2

0,1

–

,

Q3,0 =
1

u2

»

u3,0 u2 − u2,0u1,0 u +
4

9
u3

1,0

–

,

Q2,1 =
1

u2

»

u2,1 u2 +
4

9
u2

1,0u0,1

− 1

3
(u2,0u0,1 + 2 u1,1u1,0) u

–

,

Q1,2 =
1

u2

»

u1,2 u2 +
4

9
u2

0,1u1,0

− 1

3
(u0,2u1,0 + 2 u1,1u0,1)u

–

,

Q0,3 =
1

u2

»

u0,3 u2 − u0,2u0,1 u +
4

9
u3

0,1

–

,

which are used to build the following expressions:

Q̄2,0 =
1

A2

`

δ2Q2,0 − 2γδQ1,1 + γ2Q0,2

´

,

Q̄1,1 =
1

A2
(−δβQ2,0 + (γβ + αδ)Q1,1 − αγQ0,2) ,

Q̄0,2 =
1

A2

`

β2Q2,0 − 2αβQ1,1 + α2Q0,2

´

,

Q̄3,0 =
1

A3

`

δ3Q3,0 − 3γδ2Q2,1 + 3γ2δQ1,2 − γ3Q0,3

´

,

Q̄2,1 =
1

A3

`

−δ2βQ3,0 + δ(2γβ + αδ)Q2,1

− γ(γβ + 2αδ)Q1,2 + αγ2Q0,3

´

Q̄1,2 =
1

A3

`

δβ2Q3,0 − β(γβ + 2αδ)Q2,1

+ α(2γβ + αδ)Q1,2 − α2γQ0,3

´

,

Q̄0,3 =
1

A3

`

−β3Q3,0 + 3αβ2Q2,1

− 3α2βQ1,2 + α3Q0,3

´

,

where, as above, A = δα − γβ. Equations

Φ2,0 = 0, Φ0,2 = 0, Φ3,0 = 1, Φ0,3 = 1.

are equivalent to

Q̄2,0 = 0, Q̄0,2 = 0, Q̄3,0 = 1, Q̄0,3 = 1. (15)

From the first pair of equations (15) the ratios δ
γ

and β
α

are
two roots of the same quadratic equation so we have:

δ

γ
= r1 =

Q1,1 +
√

d

Q2,0
,

β

α
= r2 =

Q1,1 −
√

d

Q2,0
, (16)

where d = Q2
1,1 − Q2,0 Q0,2.

By subtracting these expressions one obtains that

r1 − r2 =
αδ − βγ

αγ
=

2
√

d

Q2,0
=⇒ A = αγ

2
√

d

Q2,0
.

From the second pair of equations (15) we obtain that:

α = Cα

`

r3
1Q3,0 − 3r2

1Q2,1 + 3r1Q1,2 − Q0,3

´1/3
, (17)

γ = Cγ

`

−r3
2Q3,0 + 3r2

2Q2,1 − 3r2Q1,2 + Q0,3

´1/3
.

where Cα = Q2,0/d′, and Cγ = Q2,0/d′ and d′ = 2
√

d. Since
β = α r2, δ = γ r1 then:

β = Cβ

`

r3
1Q3,0 − 3r2

1Q2,1 + 3r1Q1,2 − Q0,3

´1/3
, (18)

δ = Cδ

`

−r3
2Q3,0 + 3r2

2Q2,1 − 3r2Q1,2 + Q0,3

´1/3
.

where Cβ = (Q1,1 −
√

d)/d′ and Cδ = (Q1,1 +
√

d)/d′. The
substitution of the group parameters (17, 18) into Q̄1,1, Q̄2,1

and Q̄1,2 produces three fundamental differential invariants
I1,1, I2,1, I1,2 of the action (9). This means that these func-
tions, defined on J3, are unchanged under prolonged ac-
tion (9, 11) and, moreover, any other invariant function can
be locally expressed in terms of I1,1, I2,1, I1,2. Equivalently,
I1,1, I2,1, I1,2 can serve as local coordinate functions on J3,
which are constant along the orbits. Note that their re-
strictions to K are just the standard coordinate functions:
I1,1|K = u1,1, I2,1|K = u2,1, I1,2|K = u1,2. Evaluation of

functions I1,1, I2,1, I1,2 at a point u(3) ∈ J3 produces the im-
age under the projection π of u(3) to K along its orbit. Thus



one can compute the signature manifold of a cubic f(p, q) by
evaluation I1,1, I2,1, I1,2 at f , that is, by substitution of ui,j

with the actual derivatives ∂i+ju
∂ip∂jq

. As the result we obtain

three functions in p and q which define the signature mani-
fold Cf parametrically. Since two different parameterizations
can define the same manifold, in order to compare the sig-
natures of two different cubics f and f̄ , we need to eliminate
p and q and compare the corresponding implicit equations
Ψ1 (I1,1|f , I2,1|f , I1,2|f ) = 0 and Ψ2

`

I1,1|f̄ , I2,1|f̄ , I1,2|f̄
´

= 0
(see Remark 2 below). The difficulty is that the formulae
for I1,1, I2,1, I1,2 involve radicals and thus are unsuitable for
polynomial elimination algorithms. They can be used, how-
ever, to build three independent rational invariants that can
serve the same purpose. The most immediate choice con-
sists of I3

1,1, I1,2I2,1 and I3
2,1 + I3

1,2. Unfortunately these
invariants have quite complicated formulae in terms of the
coordinates on J3. By applying some ideas of the classical
invariant theory we have obtained simpler invariants

I1 =
I2, 1 I1, 2 − 1

I1, 1
3 , I2 = −4

1 + 9 I2, 1 I1, 2

I1, 1
3 ,

I3 =
1 − 3 I2, 1

2 I1, 2
2 − 6 I2, 1 I1, 2 + 4 I1, 2

3 + 4 I2, 1
3

I1, 1
6

.

It follows from Remark 3 below that I1,1|f̄ is zero if and
only if the ternary form f can be transformed into a binary
form. From now on let us assume that I1,1|f̄ 6= 0 holds. The
restriction of I1, I2, I3 to f gives a parametric description of
its signature manifold Cf . The corresponding implicit equa-
tions can be found as follows. By clearing denominators,
the relations defining I1|f , I2|f , I3|f leads to a set Σ of 3
polynomials Dk Ik|f − Nk (for k = 1 · · · 3) in the polynomial
ring C[I1|f , I2|f , I3|f , p, q] where Dk, Nk are polynomials in
C[p, q] and such that Dk 6= 0 holds. Clearly Σ is a regular
chain (see Section 2 in [5]) in C[I1|f , I2|f , I3|f , p, q] w.r.t. the
variable ordering I1|f > I2|f > I3|f > p > q. Let J be its
saturated ideal. Observe that the signature manifold Cf is
the set of regular zeros of Σ over C. Observe also that the
tower of simple extensions associated with Σ is a field. (See
[2] for these notions related to regular chains). It follows
that J is prime and that Σ is a characteristic set of J w.r.t
I1|f > I2|f > I3|f > p > q. Let T be the regular chain which
is a characteristic set of J w.r.t p > q > I1|f > I2|f > I3|f
computed by means of the PARDI algorithm [4]. Let R be
the regular chain T ∩ C[I1|f , I2|f , I3|f ]. Relation (2) in [24]
shows that the saturated ideal of R is the elimination ideal
J ∩ C[I1|f , I2|f , I3|f ]. Observe that R 6= ∅ holds. Finally,
Th .2 p. 130 in [9] shows that the variety associated with
J ∩ C[I1|f , I2|f , I3|f ] is the smallest variety containing Cf .

Remark 2. Let us call the smallest variety containing Cf

the signature variety Vf of f . The signature manifold Cf

may not fill the entire signature variety Vf neither in com-
plex nor and real case. Over C, however, there exist varieties
U1, . . . , Uℓ with dimension smaller than that of Vf such that
Vf = Cf ∪ U1 ∪ · · · ∪ Uℓ. See for instance [2]. It follows that
distinct signature varieties correspond to distinct signature
manifolds. This is not the case over the real numbers (see
Example 8.69 [28]). Since we address here the problem over
the complex numbers, we will make no distinction between
the signature manifold and the signature variety.

Using the Aldor [6] implementation (by the second author)
of the PARDI algorithm we found the signature manifolds
for all canonical cubics in terms of the above invariants.
These computations suggested a new set of invariants:

i1 = 10 (6 I1 + 1),

i2 = 6 I2 + 126 I1 + 45 I3 − 10, (19)

i3 = 10 (9 I3 + 2).

leading to exceptionally simple results listed in Section 4.

Remark 3. None of the invariants is defined when I1,1 ≡
0 (or equivalently d ≡ 0). This happens if and only if the
inhomogenization of the Hessian:

3 f(f2
pq − fpp fqq) + 2 (fpp f2

q + 2 fp fq fpq + fqq f2
p )

is identically zero, and hence if and only if the ternary form
can be transformed into a binary form (see [28] p234 for the
remarks’s on Hesse’s “theorem”).

4. CANONICAL FORMS
In order to match a cubic with its class we need to com-
pute the signatures for each of the canonical forms listed in
Theorems 1 and 2.

Example 3. To compute the signature for F = z(x2 +
y2 + z2) we first write its inhomogeneous version f = p2 +
q2 + 1 and restrict invariants i1, i2 and i3 to f . We obtain:

i1|f = 90
(p2 + q2 + 1)2

(p2 − 3 + q2)2
,

i2|f = 270
(p2 + q2 + 1)3

(p2 − 3 + q2)3
,

i3|f = 180
(p2 + q2 + 1)

`

(p2 + q2 + 3)2 − 12
´

(p2 − 3 + q2)3

Elimination of p and q leads to the defining equations for
the one-dimensional signature manifold:

i1 (i3 − i2) + 30 i2 = 0, 10 i22 − i31 = 0.

A cubic F̄ can be transformed to F by a complex linear
change of variables if and only if i1|f̄ , i2|f̄ , i3|f̄ , define a one-
dimensional variety and satisfy the above equations.

We list below the signature manifolds for the canonical cu-
bics. In order to match an arbitrary cubic f with its canoni-
cal form we need to restrict the three invariants i1, i2 and i3
to f . In order do determine its class, one does not need to
compute the signature of f itself, but just to check which of
the following relations are satisfied. The latter computations
are not difficult and were programed in Maple.

We recall also that the signature of f is the projection along
the orbits of its prolonged graph to the cross-section K.
Since the graph of f is two-dimensional the absolute major-
ity of cubics have two-dimensional signatures. The graphs of
some cubics, however, are not transversal to the orbits, and
thus their signatures are one- or zero-dimensional. Accord-
ing to Theorem 4 this indicates the increase in the dimen-
sion of the symmetry groups GF . We will list the symmetry
groups below, postponing details until Section 5.



Theorem 5. Every homogeneous cubic F (x, y, z) can be
transformed by a linear change of variables to one and only
one of the canonical forms listed below. In order to deter-
mine its canonical form, one need to compute i1|f , i2|f , i3|f
and to determine which of the relations listed below they sat-
isfy. The symmetry group of F is isomorphic to the symme-
try group of its canonical form under conjugation (3).

Irreducible cubics.

• Regular (Elliptic Curves):

(1) F ∼ x3 + axz2 + z3 − y2z, f ∼ p3+a p+1−q2,
non-equivalent for different values of a3;
a 6= 0 (else F ∼ (3)), a3 6= −27/4 (else F ∼ (5)),
|GF | = 18 × 3,

675 i31 + (10 a)3 i22 = 0.

(2) F ∼ x3 + xz2 − y2z, f ∼ p3 + p − q2,
|GF | = 36 × 3,

i2 = 0.

(3) F ∼ x3 + z3 − y2z, f ∼ p3 + 1 − q2,
|GF | = 54 × 3,

i1 = 0.

• Singular:

(4) F ∼ x3 − y2z, f ∼ p3 − q2,
GF ∼ 1-dimensional: x → x, y → αy, z → α−2z,

i1 = 0, i2 = 0.

(5) F ∼ x2(x + z) − y2z, f ∼ p2(p + 1) − q2

|GF | = 6 × 3,

i31 − 10 i22 = 0.

Reducible cubics:

• a linear and an irreducible quadratic factor:

(6) F ∼ z(x2 + yz), f ∼ (p2 + q)
GF ∼ 2-dimensional noncommutative
(affine) group, generated by:
x → x + αz, y → −2αx + y − α2z, z → z,
x → βx, y → β4y, z → β−2z,

i1 = 0, i2 = 0, i3 = 0.

(7) F ∼ z(x2 + y2 + z2), f ∼ p2 + q2 + 1
GF ∼ 1-dimensional group O(2) of orthogonal
maps on the plane

i1(i3 − i2) + 30 i2 = 0, 10 i22 − i31 = 0.

• three linear factors:

(8) non-coplaner ⇐⇒
F ∼ xyz, f ∼ p q;
GF ∼ 2-parameter:
semi-direct product of x → αx, y → βy, z →
1

αβ
z. with permutation group S3 of the lines.

i1 = 90, i2 = 270, i3 = 180.

(9) different, but coplaner ⇔
F ∼ x y (x + y), f ∼ p q(p + q)
GF ∼ 3-dimensional semi-direct product of arbi-
trary linear transformations z 7→ αx + βy + γz,
with γ 6= 0, and a finite subgroup of order 18 of
linear transformations on the (x, y)-plane, which
preserve xy(x + y).

(10) two repeated ⇔ F ∼ x2 y, f ∼ p2q
GF ∼ 4-dimensional group of matrices generated
by the transformations
x → α x, y → 1

α2 y, z → β x + γ y + δ z.

(11) three repeated ⇔ F ∼ x3, f ∼ p3.
GF ∼ 6-dimensional direct product of GL(2, C)
(affine transformations on the variables y and z
and and cyclic group Z3 multiplication of x by a
cubic root of 1).

Remark 4. The first class is actually a one-parametric
family of equivalence classes. The classes of x3+a1xz2+z3−
y2z and x3+a2xz2+z3−y2z are different unless a3

1 = a3
2. In

the latter case the transformation x → ωx, where w = a1/a2

is a cubic root of 1, maps the first cubic to the second one.

Remark 5. The last three classes (9), (10) and (11), in
fact, depend on less than three variables. Invariants i1, i2, i3
are not defined for such polynomials, neither the procedures
for computing symmetry groups and linear transformations
described in the next two section. This case should be studied
with the invariants applicable for binary forms (see [28], [3]).

The picture below shows the signatures of canonical cubics
in the three-dimensional space parameterized by i1, i2, i3.

3

2

i3

i2

i1

5

1

4

6

7

8

We notice that all low dimensional signatures are contained
in some signatures of the higher dimension. This have a nice
geometrical interpretation. As it has been mentioned in the
introduction, the set of ternary homogeneous cubics form a



ten-dimensional linear space W isomorphic to the symmetric
tensor product S3

C
3. The action (2) defines an irreducible

representation on W . An inclusion of the signature of f into
the signature of f̄ indicates that the closure of the orbit of
f̄ contains the orbit of f .

Example 4. A cubic x3 + a xz2 + z3 − y2z from the one
parametric family of equivalence classes (1) is transformed
to x3 + a ε4xz2 + ε6 z3 − y2z under the linear map

x → x, y → 1

ε
y, z → ε2z. (20)

The latter cubic tends to the cubic x3−y2z of class (4) when
ε → 0. The signature of cubics of class (4), the i3-axis, is
included into the signature of x3 +a xz2 + z3 −y2z for all a.

We summarize the inclusions of the signatures, and therefore
the inclusions of one orbits in the closure of another, by the
following diagram. Note that inclusions (9), (10), (11) of

1 2 3 5

4 7

6 8

9

10

11

binary forms are not seen from the signatures. The above
picture can be compared with the analysis of the closures
of the orbits under the action of the special linear group
SL(3, C) in Kraft [22].

The linear space of cubics is ten-dimensional, while the act-
ing group GL(3, C) is nine-dimensional, and thus we expect
to have one invariant for this action. This invariant will be
an absolute invariant in the sense of the classical invariant
theory. This means that it depends on the coefficients of a
cubic, not on the variables p, q . We notice that the ratio
i31/i22 provides such invariant.

Proposition 2. The ratio i31/i22 is an absolute invarinat
for the action (2), that is, it depends only on the coefficients
of a cubic, and is constant for each of the equivalence classes,
whenever it is defined.

Observe that the ratio i31/i22 distinguishes equivalence classes
in the set of non-singular irreducible cubics, but it does not
distinguish the equivalence classes in the set of all cubics.
For instance, it equals to 10 for classes (5), (7) and (8).

5. THE SYMMETRY GROUPS
According to Definition 2 the symmetry group of a cubic
F is the subgroup GF ⊂ GL(3, C) consisting of all linear
transformations that map F to itself. It coincides with the
group Gf ⊂ GL(3, C) which maps inhomogeneous version f
of F to itself under transformation (9). Due to Theorem 4
the dimension of the signature Cf determines the dimension
of the symmetry group: dimGf = 2 − dim Cf . Since it is
useful for computations of the symmetry groups, we sketch
the main ideas underlining the proof of Theorem 4. We start
with the following simple proposition:

Proposition 3. Assume u(3) and ū(3) are two points on

the prolonged graph Γ
(3)
f ⊂ J3, which lie on the same orbit.

That means there exists a matrix g ∈ GL(3, C), such that

g · u(3) = ū(3). Then g ∈ Gf .

Proof. The graphs Γ
(3)
f and g ·Γ(3)

f are two prolonged graphs

that pass through the point ū(3), but there is only one such

graph through each point. Thus g · Γ(3)
f = Γ

(3)
f , and hence

f = g · f .

It follows that in order to find GF one needs to study the

intersection of the prolonged graph Γ
(3)
f with the orbit O(3)

u

of u(3). In fact, since the isotropy group of each point of
J3 consists of three group elements, the points of the inter-

section Γ
(3)
f ∩ O(3)

u are in one-to-three correspondence with
the elements of the symmetry group. In order to determine
this intersection, we recall that invariants i1, i2, i3 define a
projection π of J3 onto the cross-section K. Their restric-

tion i1|f , i2|f , i3|f to Γ
(3)
f define a projection π|f : Γ

(3)
f → K,

whose image is the signature manifold of f .

Definition 4. A pair of coordinates (p, q) is called a ge-

neric point of a cubic f , if the corresponding point u(3) on

Γ
(3)
f , computed by formulae (10), projects to a generic point

c on the signature manifold Cf . That means that the point
c is a non-singular of the variety Cf and it does not belong
to any lower-dimensional signature manifold.

A randomly chosen point will be generic with probability
one. Let us choose a generic point (p0, q0), and compute

the corresponding point u(3) ∈ Γ
(3)
f and its projection c =

π|f (u(3)) ∈ Cf . Since π|f defines the projection along the or-

bits, then the preimage π|−1
f (c) = Γ

(3)
f ∩O

u
(3) is the desired

intersection. Moreover,

dim Gf = dim π|−1
f (c) = dimΓ

(3)
f − dim Cf = 2 − dimCf .

If the signature manifold has a non maximal dimension, then
a cubic has a continuous group of symmetries of dimension
one or two. The corresponding linear transformations, listed
in Theorem 5, can be easily found using Lie’s infinitesimal
methods [26], proposition 2.6. When a signature manifold of
f has the maximal dimension, two, the corresponding cubic
has a finite group of symmetries which can be explicitly
found by solving the equations:

i1|f (p, q) = i1|f (P, Q), i2|f (p, q) = i2|f (P, Q),

i3|f (p, q) = i3|f (P, Q) (21)



for P and Q in terms of p and q. Indeed, the solution of this
system will determine all points on Γf which are projected
under πf to the same point on the signature Cf . Remarkably
all the solutions of the equations (21) are linear fractional
(see [28] chapter 8, p. 190 and [3]):

P =
α p + β q + λ

a p + b q + η
,

Q =
γ p + δ q + µ

a p + b q + η
.

These symmetries are called projective. Each projective
symmetry gives rise to three genuine symmetries of the form
f(p, q). In practice however the equations (21) are diffi-
cult to solve. Nevertheless, fixing a specific generic point
(p0, q0), one can find the number of the solutions using a well
known algebraic result ([9], Proposition 8, ch. 5, § 3) and the
Gröbner basis computation (see [10], ch. 2,§ 2). The number
of the solutions determines the cardinality of the symmetry
group of f . We conclude this section with a simple corollary
from Theorems 5 and formula (3).

Corollary 1. A homogeneous cubic F in three variables
is irreducible if and only if GF ∩SL(3, C) is discrete. A cubic
F is a product of a linear factor and an irreducible quadratic
factor if and only if its GF ∩ SL(3, C) is one-dimensional.
A cubic F is a product of three different linear factors if and
only if its GF ∩ SL(3, C) is two-dimensional.

6. TRANSFORMING A CUBIC
TO ITS CANONICAL FORM

Given an arbitrary cubic polynomial F we can match it with
one of the canonical forms listed in Theorem 5 by computing
invariants i1|f , i2|f , i3|f and determining which of the rela-
tions listed in Theorem 5 they satisfy. From Theorem 3 we
know that F can be mapped to the corresponding canonical
form F̄ by a linear change of variables g. We would like
to compute g explicitly. We first note that we should not
expect a unique answer. Indeed, if F̄ = g · F and h ∈ GF ,
then also F̄ = gh · F . In fact, the entire left coset gGF will
map F to F̄ . Thus the number of possible transformations
depends on the size of the symmetry group of F . In the
finite case one can find all such transformations by solving
the system of equations:

i1|f (p, q) = i1|f̄ (P, Q), i2|f (p, q) = i2|f̄ (P, Q),

i3|f (p, q) = i3|f̄ (P, Q) (22)

for P, Q in terms of p, q, where f and f̄ are inhomogeneous
versions F and F̄ respectively (see [28] Chapter 8). This
computation, however, is too difficult to be performed in
practice and non-applicable in the infinite case, therefore,
we propose an alternative more practical algorithm.

Given an inhomogeneous version f of F one can compute
the elements of the matrix g (see (4)) using formulae (14, 17,
18). The entries of the obtained matrix are some functions
of (p, q) and therefore we denote the matrix by g|f (p, q). Let
us choose specific numeric values (p0, q0) that are generic in
the sense of Definition 4 and denote a corresponding matrix
with constant entries as g. By construction, g brings u(3)

to a point on the signature Cf : g · u(3) = c ∈ Cf . Let f̄ be
equivalent to f , then Cf̄ = Cf , and so we can find a point

(P0, Q0) such that the corresponding point ū(3) ∈ Γ
(3)

f̄
is

projected to the same point c on the signature manifold.
This can be done by solving for P , Q the system (22) with
p = p0, q = q0. Although the system we consider has many,
or even infinitely many solutions, depending on the size of
the symmetry group Gf , we are interested in any one of the

solutions (P0, Q0). The corresponding point ū(3) ∈ Γ
(3)

f̄
is

projected to the same point c ∈ Cf as the point u(3). Using
again formulae (14, 17, and 18), we compute the matrix
ḡ|f̄ (p, q), that corresponds to f̄ and evaluate it at the point

(P0, Q0) to obtain the matrix ḡ. The matrix ḡ−1 g is the
desired linear transformation.

This procedure can be summarized as follows.

1) Given a homogeneous cubic F (x, y, z) compute its inho-
mogeneous version f(p, q) = F (p, q, 1) and the correspond-
ing differential invariants i1|f , i2|f , i3|f (19).

2) Determine the canonical form F̄ , by determining which of
the relations listed in Theorem 5 are satisfied and compute
the corresponding invariants i1|f̄ , i2|f̄ , i3|f̄ .

3) Choose a generic point (p0, q0) of f and find a correspond-
ing point (P0, Q0) for f̄ as a solution of equation (22).

4) Compute matrices g = g|f (p0, q0) and ḡ = gf̄ (P0, Q0)
using (14, 17, and 18).

5) The matrix g0 = ḡ−1 g is the desired linear transforma-
tion, such that F̄ (g0 · x) = F (x).

7. CONCLUSIONS
In this paper we conduct a careful study of the equiva-
lence classes of ternary cubics under general complex linear
changes variables via moving frame method. The main ideas
of such application appeared first in Olver [28].

The new contribution of this paper is the computation of the
signature manifolds for each of the equivalence classes and a
practically feasible algorithm that matches a cubic with its
canonical form, producing explicitly a required linear trans-
formation. The implementation is made possible by trian-
gular decomposition methods. We also make an interesting
observation of the correspondence between the geometry of
signature manifolds and the geometry of the orbits in the
linear space of ternary cubics under the action of GL(3, C).

There is no theoretical difficulty in applying the same meth-
ods to the polynomials of higher degree or higher number
of variables. For ternary forms of any degree n the prob-
lem can be solved at the jet space of order min{n, 6} and
the invariants for cubics can be reused with addition of new
invariants of higher orders. The rational invariants of order
four were computed in [20]. However, the computations be-
come more challenging and we are unaware of the complete
classifications results for ternary forms of higher degrees.

The advantage of the moving frame method lies in its gen-
erality: it is applicable to any equivalence problems under
an arbitrary finite-dimensional group of transformation. In
particular, instead of the general linear group one can con-



sider its subgroups, such as the special linear group or the
orthogonal group. In this paper the dehomogenization of
the cubic F (x, y, z) leads us to the linear fractional action
(8) on polynomials in two variables of degree less or equal
to three. One can, more generally, consider nonzero weight
transformation rules f → f̄ :

f̄ = (det g)k (ap + bq + η)3 f

„

αp + βq + λ

ap + bq + η
,
γp + δq + µ

ap + bq + η

«

.

The affine action is also of interest.

Cartan’s method of equivalence was formulated in the cate-
gory of smooth manifolds. Hence, its direct applicability is
restricted to polynomials over complex or real numbers. It
would be a worthwhile and interesting project to reformu-
late the method of moving frames in the algebraic-geometry
language, so that it can be applied to the problem of the
equivalence and symmetry of algebraic varieties over fields
of arbitrary characteristics.
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