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ABSTRACT

We propose a new method for 3D object representation
using weighted skeletal graphs. The geometry of an object
is captured by assigning weights to the skeletal graph
of the object, which in turn represents its topology.
The weights provide necessary information for object
reconstruction. The method is rotation, translation, and
scaling invariant. Applications include shape representa-
tion, compression, and object recognition.

1. INTRODUCTION

In this paper, a 3D object to be analyzed is replaced
with its 2D boundary, which is assumed to be a compact
two-dimensional manifold embedded in R

3. It is further
assumed that all manifolds of interest are smooth. A short
overview of various techniques for 3D shape modeling is
given below.

Shinagawa et al. [15] proposed an algorithm for mod-
eling the topology of 3D objects using Reeb graphs
based on the height function. This approach completely
ignores the geometric information of an object. In Os-
ada et al. [13], and Hamza and Krim [3], 3D objects
are represented through shape distributions, and then a
dissimilarity measure for distributions is employed to
classify them. Lazarus et al. [8] proposed skeletonization
based on the geodesic distance from a manually chosen
source point and called their graphs level set diagrams.
Hilaga et al. [5] extended this approach by eliminating the
need for manual selection of a source point and proposing
a matching algorithm based on multiresolution Reeb
graphs. Although this achieved rotational invariance, the
algorithm was computationally intensive. In Kazhdan et
al. [6] [7], 3D shapes were modeled through a reflective
symmetry descriptor defined over a canonical parame-
terization. Kazhdan and Funkhouser [7] used rotation
invariant spherical harmonics as a shape descriptor.

Our approach to capturing the geometry of an object
begins with the calculation of a skeletal graph of the
object’s boundary. We follow [15], [5], [3] in this calcula-
tion; however, our choice of a Morse function is different.
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Fig. 1. Weighted skeletal graph: Graph itself captures the topology
while graph coupled with the weights Wi encodes the geometry of the
object.

We use the distance function that produces tranlation,
rotation, and scale invariant skeletal graphs. Next, we
assign weights to the graph, which is illustrated in Fig. 1.
These weights record the information about the shapes
of intersections of the object’s boundary and the level
surfaces of the distance function. Details are given in
Section 3. This model is complete in the sense that the
original object can be reconstructed, with given precision,
from its weighted skeletal graph.

2. TOPOLOGICAL MODEL

In this paper, we concentrate on the study of 2D sur-
faces embedded in R

3. The points of R
3 are represented

by their position vectors, which are typed in bold.

2.1. Some Definitions

Consider the distance function d : p 7→ ‖p‖ in R
3.

Given a generic surface M ⊂ R
3, the restriction of the

distance function on M,

d : M → R+, (1)

is a Morse function, i.e., all critical points of d on M are
non-degenerate (see e.g. [12] and [10]). One can thus use
the distance function for constructing a skeletal graph of
the surface M.

To analyze and encode a compact surface using the
Morse function (1), we start at the origin and gradually
increase the value of the distance function in K steps to a
sufficiently large number which we denote b. The integer
K is called the resolution of the skeletal graph. Making
K larger increases the precision of captured structural
changes in the level sets of the distance function. Recall
that such changes occur only at critical level sets.
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Fig. 2. Skeletal graph of a double torus: (a) Surface analyzed with
an evolving sphere; (b) Intersections of the sphere and the surface; (c)
Node assignment in the graph.

Since the level sets of d are concentric spheres, we
find intersections of the manifold with spheres of radii R
for all R ∈ [0, b] and assign a node to each connected
component in an intersection. This is illustrated in Fig.2.
The skeletal graph may be described as the quotient
space M/ ∼, where the equivalence relation ∼ is defined
below.

Definition 2.1: (Equivalence) We say that the points p
and q on the surface are equivalent and write p ∼ q if and
only if p and q belong to the same connected component
of the level set of the function d.

Recall the definition of the quotient space: M/ ∼:=
{[p] | p ∈ M}, where the equivalence class [p] of the
point p ∈ M is the set of all points q ∈ M such that
q ∼ p.

Note that the function d given by Eq. (1) is not
invariant with respect to translation and scaling. In order
to have this invariance, we put the origin at the centroid
µ of the surface of interest and set

dµ(p) := ‖p − µ‖.

We then introduce the scaled distance function d̃µ by
the formula

d̃µ(p) =
dµ(p) − dmin

dmax − dmin
. (2)

2.2. The Algorithm

The algorithm for computing the skeletal graph is
illustrated in Fig. 3 and proceeds as follows:

• Find the centroid of the surface M as the arithmetic
mean of the vertices of the triangulated mesh and
place the origin at the centroid

• Find dmax, the maximum distance from the centroid
to M

• Given K , define:

rk := k
dmax

K
, k = 1, . . . , K

• Generate the spheres S1 and S2 with radii R = r1

and R = r2, respectively
• Find M̃p = M∩ (bS1c ∩ dS2e), where d.e and b.c

identify the interior and exterior of a closed surface;

Fig. 3. Skeletonization of a surface M.

M̃p is, therefore, the part of M that lies between
S1 and S2

• Assign a node NMp
to each connected component

Mp of M̃p at the centroid of Mp

• For k = 3 to K

– Generate the “current” sphere Sk with radius
R = rk

– Find M̃c = M∩ (bSk−1c∩ dSke). Hence, M̃c

is the portion of M that lies in between Sk−1

and Sk

– Find the connected components Mc of M̃c

– For each Mc ∈ M̃c do

∗ Assign a node NMc
at the centroid of Mc

∗ Find the connected region Mp ∈ M̃p such
that Mc ∪Mp is a single connected region.
Add an edge between NMc

and NMp

– end for
– M̃p = M̃c

• end for.

3. GEOMETRIC REPRESENTATION

In this section we identify the geometry of a 3D object
by adding weights to the skeletal graph associated with
the distance function. The key idea is to encode the
shape of the level curves of the distance function that lie
along topologically homogeneous parts of the surface of
the object, and to model them subsequently. These level
curves are simple closed curves unless they belong to a
critical level of the distance function. Once the desired
number of the level curves is coded, the remaining ones
are restored through a nonlinear interpolation technique
known as elasticæ.

3.1. Curve evolution model

Each level set of the distance function is a curve on
a sphere. Therefore, after a local coordinate system on a
sphere is chosen, the problem of modeling these curves



can be reduced to the problem of modeling planar curves.
We typically use the spherical coordinates (θ, φ), with
θ ∈ [−π, π] and φ ∈ [−π

2 ,−π
2 ]. In this setting, we model

curves in the rectangle Λ = [−π, π] × [−π
2 ,−π

2 ]. There
is, however, an additional step to perform because the
curve evolution model that we are going to adopt here
is valid strictly for closed curves. If the original level
curve cycles around the z-axis, its representation in Λ is
not a closed curve. There are various ways to address
this situation. In some cases, it is enough to rotate the
coordinate system in R

3 in order to move the z-axis out
of the level curve. In other situations, when this rotation
may be either impossible or undesirable to perform, we
use appropriate coordinates on the sphere to perform our
calculations. For instance, when the level curve is close to
a big circle on a sphere, the stereographic projection is a
good choice of coordinates. In the subsequent discussion,
we assume that the curves in Λ are closed.

Let Cr ∈ Λ be a closed curve that corresponds to the
r-level curve of the distance function. For such Cr, we
define the signed distance field ρr : Λ → R by

ρr(x, y) =

{
+D((x, y), Cr) if (x, y) ∈ dCre

−D((x, y), Cr) if (x, y) ∈ bCrc.
(3)

In the above, D((x, y), Cr) denotes the distance from the
point (x, y) to the set Cr, i.e.,

D((x, y), Cr) = min
(u,v)∈Cr

D̃ ((x, y), (u, v)),

where D̃ is the Euclidean distance, and bCrc and dCre
represent the interior and exterior of Cr, respectively.

The space Ω(Λ) of closed curves on Λ is infinite-
dimensional. In practice, Ω(Λ) is approximated by a
finite-dimensional vector space R

n. We write this as
ρ : Ω(Λ) → R

n. Thus, given curves C1, . . . , Cm at
levels r1, . . . , rm, we obtain a collection of m points,
ρ1, . . . ,ρm in R

n. Our goal is to model a smooth
trajectory that best fits these points. We adopt the elasticæ
approach [9]. That is, we fit curve segments between each
pair of consecutive points ρj and ρj+1 and require that

• The overall trajectory minimizes the cost functional

E(α) = L

∫ L

0

κ2
α
(s) ds; (4)

• the tangent lines to the curve segments ρj−1ρj and
ρjρj+1 at ρj are the same.

The latter requirement induces the boundary conditions
for the cost functional (4). Here and below, curves α :
[0, L] → R

3 are parameterized by the arc length and
κα(s) = ‖α′′(s)‖ is the absolute value curvature of α at
s ∈ [0, L].

For minimization, we use the algorithm given in [11].
The process is illustrated in Fig. 4 where, given α2, α3

and α4, we have fitted elasticæ between successive pairs

Fig. 4. Two consecutive elasticæ segments with aligned starting and
ending tangents.

(a) (b) (c)

Fig. 5. Skeletal graphs for a double torus: (a) K = 4; (b) K = 8; (c)
K = 16.

of points (α2, α3) and (α3, α4). Thus, for any value
r of the distance function d, we first find the curves
α(s) and ρ(s) from the elasticæ model and then find
the corresponding signed distance field ρr. The zero level
set of ρr represents the (reconstructed) level curve of the
distance function.

4. TOPO-GEOMETRIC MODEL

As mentioned in the previous section a part of the
surface that corresponds to an edge of the skeletal graph
is represented by a smooth trajectory. This trajectory
is composed of elasticæ segments between successive
points in R

3. A trajectory, in turn, may be approximated
by its spline. Topological and geometrical information
is, therefore, combined by weighting each edge of the
skeletal graph with the corresponding spline coefficients.
Since these weights represent the geometry of the part of
the surface along an edge, the weighted skeletal graph is
the signature of a given surface. Therefore, the problem
of recognition of a 3D object reduces to the matching
problem of weighted graphs

5. EXPERIMENTAL RESULTS

Skeletal graphs of three 3D objects are given in
Figs. 5–7. In addition, Fig. 7 illustrates the rotational
invariance of the proposed technique.
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Fig. 6. Skeletal graphs for a camel: (a) K = 8; (b) K = 16; (c)
K = 32.
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Fig. 9. The critical curve of the elasticæ functional.

(a) (b) (c)

Fig. 7. Rotational invariance of a skeletal graph: (a) No rotation; (b)
Rotation by π/2; (c) Rotation by 3π/4.

We give some details on the procedure of capturing the
geometry of a double torus. Consider the edge γ of
the skeletal graph that corresponds to the highlighted
part of the surface in Fig. 8(a). The surface is sampled
with K = 100, which gives 98 level curves along this
edge. The optimal tree gives a minimal set of 13 curves,
removing redundant curves, a reduction by a factor of
7.54. The elasticæ model is then applied, resulting in the
trajectory given in Fig. 9. From the model, we sampled
several curves which are rendered in Fig. 8(b). The spline
coefficients are eventually assigned to arc γ as weights.
The entire reconstructed surface is shown in Fig. 8(d). A
more complicated example is given in Fig. 10.

(a) (b) (c) (d)

Fig. 8. Surface modeling for a double torus: (a) Level curves of the
distance function along the edge γ; (b) Reconstructed part of the surface
along the edge γ; (c) Optimal curve set; (d) Reconstructed double torus.

(a) (b) (c)

Fig. 10. Reconstruction of the Twins: (a) Original object; (b) Color
coded level curves; (c) Reconstructed object.

6. CONCLUSIONS

In this paper we proposed a 3D object representation
that is rotation, scale and translation invariant. The ge-
ometry of an object is captured by assigning weights to
the distance-function-based skeletal graph. The resulting
weighted graph may be used for object recognition and
compression.
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