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ABSTRACT

In this paper, we propose a numerical algorithm for extracting
the topology of a three-dimensional object (2 dimensional sur-
face) embedded in a three-dimensional space R

3. The method
is based on capturing the topology of a modified Reeb graph
by tracking the critical points of a distance function. As such,
the approach employs Morse theory in the study of translation,
rotation, and scale invariant skeletal graphs. The latter are useful
in the representation and classification of objects in R

3.

1. INTRODUCTION

Topology is an important attribute of 3D objects which
describes how different parts of an object surface are connected
to each other. Two objects have the same topology if one can
be morphed into the other with no tearing or gluing. Geometry,
on the other hand, represents the relative position of points on
the surface. For example, a camel and a frog have different
geometric properties whereas topologically they are the same.

In this paper, we propose a novel algorithm that computes a
skeletal graph and thus captures the topology of a 3D object.
Simultaneously, the algorithm extracts the geometric properties
of the object. The proposed encoding of the topology and
geometry of an object is sufficiently complete for classifi-
cation/recognition applications. We also provide some results
which show that the technique is applicable to 2D objects as
well.

The paper is organized as follows: We start with a brief
overview of Morse theory in Section 2 followed by a literature
review in Section 3. The proposed method is exposed in
Section 4, and some experimental results are shown in Section 5.

2. AN OVERVIEW OF MORSE THEORY

In this paper, a 3D object to be analyzed is replaced with
its 2D boundary, which is assumed to be a compact two-
dimensional manifold embedded in R

3. It is further assumed
that all manifolds of interest are smooth.

Morse theory [5], [1], [4] relates the topology of a smooth
manifold and the number of critical points of a Morse function
(see the definition below) on this manifold.

A k-dimensional manifold M may be locally parameterized
as

φ : Ω → M,

that is, Ω 3 u 7→ φ(u) ∈ M, where an open connected set
Ω ⊂ R

k represents the parameter space. Let f : M → R be a
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Fig. 1. Manifold M and the critical points of the height function.

real-valued function defined on M. By definition, f is smooth
if the composition f ◦ φ : Ω → R is smooth for each local
parameterization of M. A point x = φ(u) ∈ M is called a
critical point of f if the gradient of f◦φ vanishes at u, i.e., 5f◦
φ(u) = 0. The critical point x ∈ M is called non-degenerate if
the Hessian 52f◦φ(u) is non-singular at u.1 The Morse Lemma
states that there exists a parameterization of a neighborhood of
a non-degenerate critical point of f in which f ◦φ is a quadratic
form. The number of negative eigenvalues of the matrix of this
quadratic form is called the index of the critical point. For a
smooth function on a two-dimensional manifold M, the three
possible types of non-degenerate critical points are the local
minimum (index 0), saddle point (index 1), and local maximum
(index 2).

Definition 2.1: (Morse function) A smooth function f :
M → R on a smooth manifold M is called a Morse function
if all of its critical points are non-degenerate.

Following are the basic properties of critical points of Morse
functions:

• Critical points of a Morse function are isolated.
• The number of critical points of a Morse function is stable,

i.e., a small perturbation of the function neither creates nor
destroys critical points.

• A Morse function defined on a compact manifold has
finitely many critical points.

It should be noted that the type and number of critical points
allow one to identify the topological structure of M.

In this paper, we concentrate on the study of 2D surfaces
embedded in R

3. The points of R
3 are represented by their

position vectors, which are typed in bold. The parameter space
Ω is two-dimensional, and points in Ω are written as (u, v).
Thus, if x lies on the surface, we write x = x(u, v).

Example 2.2: (Height function) The height function defined
on a compact surface M ⊂ R

3 is a real valued function h :

1This definition is independent of the choice of the local parameter-
ization in the neighborhood of the critical point.
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M → R such that h(x, y, z) = z,∀(x, y, z) ∈ M. If M
is a sphere S2 , h has two non-degenerate critical points: a
minimum at the south pole and a maximum at the north pole.
Thus h : S2 → R is a Morse function.

Fig. 1 illustrates critical points of the height function defined
on a double torus which correspond to the minimum, the
maximum, and the saddle points.

3. PREVIOUS WORK

The use of the height function for topological analysis of
manifolds was proposed by Reeb [6]. Shinagawa et al. [7]
presented an algorithm for computing Reeb graphs. Although
computationally simple, height function based Reeb graphs are
not invariant with respect to rotations. As a remedy, Lazarus et
al. [3] proposed skeletonization based on the geodesic distance
from a manually chosen source point and called the graphs
obtained this way the level set diagrams. Hilaga et al. [2]
extended this approach by eliminating the need for manual
selection of a source point and proposing a matching algorithm
based on multiresolution Reeb graphs. Although this achieved
rotational invariance, the algorithm became computationally
intensive.

The approach proposed in this paper obtains rotation invariant
skeletal graphs. In addition, the algorithm itself is compu-
tationally simple and resembles the algorithm for computing
the height function-based Reeb graphs. We remark that the
invariance with respect to rotations results from the use of the
distance function in our analysis.

4. PROPOSED APPROACH

Consider the distance function d : p 7→ ‖p‖ in R
3. Given a

generic surface M ⊂ R
3, the restriction of the distance function

on M,
d : M → R+, (1)

is a Morse function and can be used for constructing skeletal
graphs.

To analyze and encode a compact surface using the Morse
function (1), we start at the origin d(p) = 0 and gradually
increase the value of the distance function in K steps to a
sufficiently large number which we denote b. The integer K
is called the resolution of the skeletal graph. Making K larger
increases the precision of captured structural changes in the
level sets of the distance function. Recall that such changes
occur only at critical level sets.

Since the level sets of d are concentric spheres, we find
intersections of the manifold with spheres of radii R for all
R ∈ [0, b] and assign a node to each connected component in
an intersection. This is illustrated in Fig.2. The skeletal graph
may be described as the quotient space M/ ∼, where the
equivalence relation ∼ is defined below.

Definition 4.1: (Equivalence) We say that the points p and
q on the surface are equivalent and write p ∼ q if and only if
p and q belong to the same connected component of the level
set of the function d.

Recall the definition of the quotient space: M/ ∼:= {[p] |
p ∈ M}, where the equivalence class [p] of the point p ∈ M
is the set of all points q ∈ M such that q ∼ p.

(a) (b) (c)

Fig. 2. Skeletal graph of a double torus: (a) The surface analysis with
an evolving sphere; (b) Intersections of the spheres and the surface; (c)
Node assignment in the graph.

Note that the function d given by Eq. (1) is not invariant
with respect to translation and scaling. In order to have this
invariance, we put the origin at the centroid µ of the surface of
interest and set

dµ(p) := ‖p − µ‖.

We then introduce the scaled distance function d̃µ by the
formula

d̃µ(p) =
dµ(p) − dmin

dmax − dmin

. (2)

Proposition 4.2: (Invariance) The distance function given by
Eq. (2) is rotation, translation, and scale invariant.

Proof: We will prove this statement for two-dimensional
manifolds. Let µ = (µx, µy , µz) be the centroid of the manifold
M, and let p be an arbitrary point on M.

We first confirm that the function dµ is translational and
rotational invariant. An arbitrary Euclidean transformation of
R

3 is given by p 7→ Ap + b, where the vector b represents the
translation and the orthogonal matrix A represents the rotation.
Since µ undergoes the same transformation, we have

d
Aµ+b(Ap + b) = ‖(Ap + b) − (Aµ + b)‖

= ‖A(p − µ)‖

= ‖p − µ‖

= dµ(p).

Therefore, d̃µ is invariant with respect to rotations and transla-
tions in R

3.
Now if we scale the manifold by a factor of a, then

dµ(ap) =
√

(ax)2 + (ay)2 + (az)2

= a
√

x2 + y2 + z2

= adµ(p),

and therefore,

d̃µ(ap) =
dµ(ap) − admin

admax − admin

=
dµ(p) − dmin

dmax − dmin

= d̃µ(p).



4.1. Equations for the Critical Points of the Distance Function

Assume that the surface M is locally parameterized as a
graph, i.e., p = (u, v, g(u, v)), and that the centroid is located at
the origin. The distance function d(x, y, z) =

√

x2 + y2 + z2

restricted to M reads

d̃(u, v) = d|M =
√

u2 + v2 + g2(u, v).

The partial derivatives of d̃ are

∂d̃

∂u
=

2u + 2ggu

2
√

u2 + v2 + g2(u, v)

∂d̃

∂v
=

2u + 2ggv

2
√

u2 + v2 + g2(u, v)
.

At a critical point the partial derivatives of d̃ vanish. There-
fore the critical points of the distance function on the surface
M are the solutions of the system

gu(u, v) +
u

g(u, v)
= 0,

gv(u, v) +
v

g(u, v)
= 0.

4.2. The Algorithm

The algorithm for computing extended Reeb graphs is illus-
trated in Fig. 3 and proceeds as follows:

• Find the centroid of the surface M as the arithmetic mean
of the vertices of the triangulated mesh and place the origin
at the centroid

• Find dmax, the maximum distance from the centroid to M
• Given K, define:

rk := k
dmax

K
, k = 1, . . . , K

• Generate the spheres S1 and S2 with radii R = r1 and
R = r2, respectively

• Find M̃p = M ∩ (bS1c ∩ dS2e), where d.e and b.c
identify the interior and exterior of a closed surface; M̃p

is, therefore, the part of M that lies between S1 and S2

• Assign a node NMp
to each connected component Mp of

M̃p at the centroid of Mp

• For k = 3 to K

– Generate the “current” sphere Sk with radius R = rk

– Find M̃c = M ∩ (bSk−1c ∩ dSke). Hence, M̃c is
the portion of M that lies in between Sk−1 and Sk

– Find the connected components Mc of M̃c

– For each Mc ∈ M̃c do
∗ Assign a node NMc

at the centroid of Mc

∗ Find the connected region Mp ∈ M̃p such that
Mc ∪ Mp is a single connected region. Add an
edge between NMc

and NMp

– end for
– M̃p = M̃c

• end for.

4.3. Application to 2D Objects

The algorithm given in Section 4.2 is applicable to planar
curves with a slight modification. The curve is now scanned by
an evolving circle, whose intersections with the curve are arcs
instead of closed curves. Results are presented in Section 5.

Fig. 3. Skeletonization of a surface M in R
3.

5. EXPERIMENTAL RESULTS

5.1. 3D Objects

Extended Reeb graphs for several 3D objects are given in
Figs. 4 through 7. Fig. 8 illustrates rotational invariance of the
proposed technique.

(a) (b)

Fig. 4. Extended Reeb graph and level curves for a double torus.

(a) (b) (c)

Fig. 5. Extended Reeb graphs for a double torus: (a) K = 4; (b)
K = 8; (c) K = 16.

(a) (b)

Fig. 6. Extended Reeb graphs: (a) An airplane; (b) A horse.



(a) (b) (c)

Fig. 7. Extended Reeb graphs for a camel: (a) K = 8; (b) K = 16;
(c) K = 32.

(a) (b) (c)

Fig. 8. Rotational invariance of extended Reeb graph: (a) No rotation;
(b) Rotation by π/2; (c) Rotation by 3π/4.

5.2. 2D Objects

Extended Reeb graphs of 2D objects are given in Figs. 9
through 12.

(a) (b) (c)

Fig. 9. Skeletonization of an eight shape: (a) K = 4; (b) K = 5; (c)
K = 7.

(a) (b)

Fig. 10. Skeletonization of a kettle: (a) K = 4; (b) K = 16.

(a) (b) (c)

Fig. 11. Skeletonization of an airplane: (a) K = 4; (b) K = 16; (c)
K = 64;.

(a) (b) (c)

Fig. 12. Skeletonization: (a) Camel K = 64; (b) Horse K = 8; (c)
Frog K = 16.

6. CONCLUSIONS

In this paper, we have presented an algorithm for capturing
the topology of 3D objects using the distance function based
Reeb graphs. The distance function based Reeb graphs have
shown to be rotation, translation, and scale invariant. The
technique has been applied to 2D objects as well. The algorithm
we proposed in this paper can be used for object recognition
through graph matching.
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