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ABSTRACT
We present a novel algorithm for deciding whether a given
planar curve is an image of a given spatial curve, obtained
by a central or a parallel projection with unknown param-
eters. A straightforward approach to this problem consists
of setting up a system of conditions on the projection pa-
rameters and then checking whether or not this system has
a solution. The computational advantage of the algorithm
presented here, in comparison to algorithms based on the
straightforward approach, lies in a significant reduction of
a number of real parameters that need to be eliminated in
order to establish existence or non-existence of a projection
that maps a given spatial curve to a given planar curve.
Our algorithm is based on projection criteria that reduce the
projection problem to a certain modification of the equiva-
lence problem of planar curves under affine and projective
transformations. The latter problem is then solved using a
separating set of rational differential invariants. A similar
approach can be used to decide whether a given finite list of
points on a plane is an image of a given finite list of points in
R3. The motivation comes from the problem of establishing
a correspondence between an object and an image, taken by
a camera with unknown position and parameters.
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cations

General Terms
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Figure 1: A pinhole camera [24].
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1. INTRODUCTION
A central projection from R3 to R2 models a simple pin-

hole camera pictured in Figure 1. A generic central projec-
tion is described by a linear fractional transformation (1):

x =
p11 z1 + p12 z2 + p13 z3 + p14

p31 z1 + p32 z2 + p33 z3 + p34
,

(1)

y =
p21 z1 + p22 z2 + p23 z3 + p24

p31 z1 + p32 z2 + p33 z3 + p34
,

where (z1, z2, z3) denote coordinates in R3, (x, y) denote co-
ordinates in R2 and pij , i = 1 . . . 3, j = 1 . . . 4, are real param-
eters of the projection, such that the left 3 × 3 submatrix
of 3 × 4 matrix P = (pij) has a non-zero determinant. Pa-
rameters represent the freedom to choose the center of the
projection, the position of the image plane and (in general
non-orthogonal) coordinate system on the image plane.1 In
the case when the distance between a camera and an object
is significantly greater than the object depth, a parallel pro-
jection provides a good camera model. A parallel projection
has 8 parameters and can be described by a 3× 4 matrix of
rank 3, whose last row is (0, 0, 0, 1). We review various cam-
era models and related geometry in Section 2 (see also [17]).
In most general terms, the projection problem considered
here is formulated as follows:

1It is clear from (1) that multiplication of P by a non-zero
constant does not change the projection map. Therefore,
we can identify P with a point of the projective space PR11,
rather than a point in R12. However, since we do not know
which of the parameters are non-zero, in computations we
have to keep all 12 parameters.



Problem 1. Given a subset Z of R3 and a subset X of
R2, does there exist a projection P : R3 → R2 such that X =
P (Z)?

A straightforward approach to this problem consists of set-
ting up a system of conditions on the projection parameters
and then checking whether or not this system has a solution.
In the case when Z and X are finite lists of points, a solution
based on the straightforward approach can be found in [17].
For curves and surfaces under central projections, this ap-
proach is taken in [12]. However, internal parameters of the
camera are considered to be known in that paper and, there-
fore, there are only 6 camera parameters in that study vs. 12
considered here. The method presented in [12] also uses an
additional assumption that a planar curve X ⊂ R2 has at
least two points, whose tangent lines coincide. An alterna-
tive approach to the problem in the case when Z and X are
finite lists of points under parallel projections was presented
in [2, 1]. In these articles, the authors establish polynomial
relationships that have to be satisfied by coordinates of the
points in the sets Z and X in order for a projection to exists.
Our approach to the projection problem for curves is closer
in spirit to [2, 1], as we also establish necessary and sufficient
conditions that curves Z and X must satisfy in order for a
projection to exist. However, unlike [2, 1], we exploit the re-
lationship between the projection problem and equivalence
problem under group-actions. We will show below that, in
comparison with the straightforward approach, our solution
leads to a significant reduction of the number of parameters
that have to be eliminated in order to solve Problem 1 for
curves.

In this paper, we assume that Z and X are rational alge-
braic curves, i. e. Z = {Γ(s)|s ∈ R} and X = {γ(t)|t ∈ R},
where Γ: R → R3 and γ : R → R2 are rational maps, and
that Z is not a straight line (and, therefore, its image under
any projection is a one-dimensional constructible set). We

also relax the projection condition to X = P (Z), where bar
throughout the paper denotes the algebraic closure of a set.
The case of non-rational algebraic curves in more technical
and is discussed in [6]. Then Problem 1, for central projec-
tions, can be reformulated as the following real quantifier
elimination problem:

Reformulation 1. (straightforward approach) Given
two rational maps Γ: R → R3 and γ : R → R2, determine
the truth of the statement:

∃P ∈ R
3×4 det(pij)

j=1...3
i=1...3 6= 0

∀s in the domain of Γ(s) ∃t ∈ R γ(t) = P (Γ(s)).

Real quantifier elimination problems are algorithmically solv-
able [22]. A survey of subsequent developments in this area
can be found, for instance, in [18] and [9]. High computa-
tional complexity of these problems makes a reduction in
the number of parameters to be desirable.

The projection criteria developed in this paper reduces
the projection problem to the problem of deciding whether
the given planar curve X is equivalent to a curve in a cer-
tain family of planar curves under an action of the projective
group in the case of central projections, and under the ac-
tion of the affine group in the case of parallel projections.
The family of curves depends on 3 parameters in the case
of central projections, and on 2 parameters in the case of
parallel projections.

These group-equivalence problems can be solved by an
adaptation of differential signature construction developed
in [7] to solve local equivalence problems for smooth curves.
In Section 4, we give an algebraic formulation of signature
construction and show that it leads to a solution of global
equivalence problems for algebraic curves. For this pur-
pose we introduce a notion of differentially separating set
of invariants. Following this method for the case of central
projections, when Z and X are rational algebraic curves,
we define two rational signature maps SX : R → R2 and
SZ : R4 → R2. Construction of these signature maps re-
quires only differentiation and arithmetic operations and is
computationally trivial. Problem 1 becomes equivalent to

Reformulation 2. (signature approach) Given two ra-
tional maps SX : R → R2 and SZ : R4 → R2, determine the
truth of the statement:

∃c ∈ R
3 ∀s in the domain of SZ (c, s)

∃t ∈ R SZ(c, s) = SX (t).

We note that Reformulation 1 and Reformulation 2 have
similar structure, but the former requires elimination of 14
parameters, while the latter requires elimination of only 5
parameters.2 The case of parallel projection is treated in the
similar manner and leads to the reduction of the number of
real parameters that need to be eliminated from 10 to 4.

Our method can be easily adapted to solve projection
problems for curves in Rn projected to a hyperplane. The
problem and the solution remains valid if we replace R with
C and, in fact, as with most problems in algebraic geome-
try, the implementation of the algorithms is easier over the
complex numbers.. The existence of a complex projection
provides a necessary but not a sufficient condition for the
existence of a real projection. In Section 6, we discuss how
this method leads to an alternative solution to the projection
problem for finite lists of points (see [5] for more details).

Although the relation between projections and group ac-
tions is known, our literature search did not yield algorithms
that exploit this relationship to solve the projection problem
for curves in the generic setting of cameras with unknown
internal and external parameters. The goal of the paper is
to introduce such algorithms. Although the development of
efficient implementations of these algorithms and their com-
plexity study lie outside of the scope of this paper, we made
a preliminary implementations in Maple of projection al-
gorithms over complex numbers. We implemented both an
algorithm based on signature construction presented here
and an algorithm based on the straightforward approach and
timed their performance. The code and the experiments are
posted on the internet [25].

In order to become practically useful in real-life applica-
tions, the algorithmic solution presented here, would have
to be adapted to curves given by a finite sampling of points.
Some directions of such adaptation are indicated in Section 7
of the paper.

2. PROJECTIONS AND CAMERAS
We embed Rn into projective space PRn and use homoge-

neous coordinates on PRn to express the map (1) by matrix
multiplication.

2We include parameters t and s into the count.



Notation 2. Square brackets around matrices (and, in
particular, vectors) will be used to denote an equivalence
class with respect to multiplication of a matrix by a nonzero
scalar. Multiplication of equivalence classes of matrices A
and B of appropriate sizes is well-defined by [A] [B] := [AB].

With this notation, a point (x, y) ∈ R2 corresponds to a
point [x, y, 1] = [λx, λy, λ] ∈ PR2 for all λ 6= 0, and a point
(z1, z2, z3) ∈ R3 corresponds to [z1, z2, z3, 1] ∈ PR3. We will
refer to the points in PRn whose last homogeneous coordi-
nate is zero as points at infinity. In homogeneous coordi-
nates projection (1) is a map [P ] : PR3 → PR2 given by

[x, y , 1]T = [P ] [z1, z2, z3, 1]T, (2)

where P is 3×4 matrix of rank 3 and superscript T denotes
transposition. Matrix P has a 1-dimensional kernel. There-
fore, there exists a point [z0

1 , z0
2 , z0

3 , z0
4 ] ∈ PR3 whose image

under the projection is undefined (recall that [0, 0, 0] is not
a point in PR2). Geometrically, this point is the center of
the projection.

In computer science literature (e.g. [17]), a camera is called
finite if its center is not at infinity. A finite camera is mod-
eled by a matrix P , whose left 3 × 3 submatrix is non-
singular. Geometrically, finite cameras correspond to central
projections from R3 to a plane. On the contrary, an infinite
camera has its center at an infinite point of PR3. An infinite
camera is modeled by a matrix P whose left 3×3 submatrix
is singular. An infinite camera is called affine if the preim-
age of the line at infinity in PR2 is the plane at infinity in
PR3. An affine camera is modeled by a matrix P whose
last row is (0, 0, 0, 1). In this case map (1) becomes x =
p11 z1+p12 z2+p13 z3+p14 , y = p21 z1+p22 z2+p23 z3+p24.
Geometrically, affine cameras correspond to parallel projec-
tions from R3 to a plane.3 Eight degrees of freedom reflect
a choice of the direction of a projection, a position of the
image plane and a choice of linear system of coordinates on
the image plane. An image plane may be assumed to be
perpendicular to the direction of the projection, since other
choices are absorbed in the freedom to choose, in general,
non-orthogonal coordinate system on the image plane.

Definition 3. A set of equivalence classes [P ], where
P = (pij)

i=1...3
j=1...4 is a 3× 4 matrix whose left 3× 3 submatrix

is non-singular, is called the set of central projections and
is denoted CP.

A set of equivalence classes [P ], where P = (pij)
i=1...3
j=1...4 has

rank 3 and its last row is (0, 0, 0, λ), λ 6= 0, is called the set
of parallel projections and is denoted PP.

Equation (1) determines a central projection when [P ] ∈ CP
and it determines a parallel projection when [P ] ∈ PP. Sets
CP and PP are disjoint. Projections that are not included in
these two classes correspond to infinite, non-affine cameras.
These are not frequently used in computer vision and are
not considered in this paper.

3. PROJECTION CRITERIA FOR CURVES
Recall that for every algebraic curve X ⊂ Rn there exists

a unique projective algebraic curve [X ] ⊂ PRn such that [X ]
is the smallest projective variety containing X (see [14]).

3Parallel projections are also called generalized weak per-
spective projections [2, 1].

Definition 4. We say that a curve Z ⊂ R3 projects to
X ⊂ R2 if there exists a 3 × 4 matrix P of rank 3 such that
[X ] = {[P ][z] | z ∈ Z, Pz 6= 0}. We then write X = P (Z)
or [X ] = [P ][Z].

Definition 5. The projective group PGL(n+1) is a quo-
tient of the general linear group GL(n + 1), consisting of
(n + 1) × (n + 1) non-singular matrices, by a 1-dimensional
abelian subgroup λI, where λ 6= 0 ∈ R and I is the iden-
tity matrix. Elements of PGL(n+1) are equivalence classes
[B] = [λB], where λ 6= 0 and B ∈ GL(n + 1).

The affine group A(n) is a subgroup of PGL(n+1) whose
elements [B] have a representative B ∈ GL(n + 1) with the
last row equal to (0, . . . , 0, 1).

The special affine group SA(n) is a subgroup of A(n)
whose elements [B] have a representative B ∈ GL(n + 1)
with determinant 1 and the last row equal to (0, . . . , 0, 1).

In homogeneous coordinates, the standard action of the pro-
jective group PGL(n+1) on PRn is defined by multiplication:

[z1, . . . , zn, z0]
T → [B] [z1, . . . , zn, z0]

T. (3)

The action (3) induces linear-fractional action of PGL(n+1)
on Rn. The restriction of (3) to A(n) induces an action on
Rn consisting of compositions of linear transformations and
translations.

Definition 6. We say that two curves X1 ⊂ Rn and
X2 ⊂ Rn are PGL(n + 1)-equivalent if there exists [A] ∈
PGL(n+1), such that [X2] = {[A][p] | [p] ∈ [X1]}. We then
write X2 = A(X1) or [X2] = [A][X1]. If [A] ∈ G, where G
is a subgroup of PGL(n + 1), we say that X1 and X2 are
G-equivalent.

Before stating the projection criteria, we make the following
simple, but important observations.

Proposition 7. (i) If Z ⊂ R3 projects to X ⊂ R2

by a parallel projection, then any curve that is A(3)-
equivalent to Z projects to any curve that is A(2)-
equivalent to X by a parallel projection. In other words,
parallel projections are defined on affine equivalence
classes of curves.

(ii) If Z ⊂ R3 projects to X ⊂ R2 by a central projec-
tion then any curve in R3 that is A(3)-equivalent to Z
projects to any curve on R2 that is PGL(3)-equivalent
to X by a central projection.

Proof. (i) Assume that there exists a parallel projection
[P ] ∈ PP such that [X ] = [P ][Z]. Then for all (A, B) ∈
A(2) × A(3) we have [A] [X ] = [A] [P ] [B−1] [B] [Z]. Since
[A] [P ] [B−1] ∈ PP, curve B(Z) projects to A(X ). (ii) is
proved similarly.

Remark 8. It is known that if X1 and X2 are images of a
curve Z under two central projections with the same center,
then X1 and X2 are PGL(3)-equivalent, but if the centers of
the projections are not the same this is no longer true (see
Example 33). Similarly, images of Z under different parallel
projections may not be A(2)-equivalent (see Example 35).

Theorem 9. (central projection criterion.)
A curve Z ⊂ R3 projects to a curve X ⊂ R2 by a central



projection if and only if there exist c1, c2, c3 ∈ R such that
X is PGL(3)-equivalent to a planar curve

Z̃c1,c2,c3 =

„

z1 + c1

z3 + c3
,

z2 + c2

z3 + c3

«

˛

˛

˛ (z1, z2, z3) ∈ Z
ff

(4)

Proof. (⇒) Assume there exists a central projection [P ]
such that [X ] = [P ] [Z]. Then P is a 3 × 4 matrix P =
(pij)

i=1...3
j=1...4 whose left 3×3 submatrix is non-singular. There-

fore there exist c1, c2, c3 ∈ R such that p∗4 = c1 p∗1+c2 p∗2+
c3 p∗3, where p∗j denotes the j-th column of the matrix P .
We observe that

[A][P 0
C ][B] = [P ] , (5)

where A := (pij)
i=1...3
j=1...3 is 3 × 3 submatrix of P ,

P 0
C :=

0

@

1 0 0 0
0 1 0 0
0 0 1 0

1

A and B :=

0

B

B

@

1 0 0 c1

0 1 0 c2

0 0 1 c3

0 0 0 1

1

C

C

A

.

(6)
Note that [A] belongs to PGL(3). Since

[P 0
C ][B][z1, z2, z3, 1]T = [z1 + c1, z2 + c2, z3 + c3]

T,

then [X ] = [A][Z̃c1,c2,c3 ], where Z̃c1,c2,c3 is defined by (4).
(⇐) To prove the converse direction we assume that there

exists [A] ∈ PGL(3) and c1, c2, c3 ∈ R such that [X ] =

[A][Z̃c1 ,c2,c3 ], where Z̃c1,c2,c3 is defined by (4). A direct
computation shows that Z is projected to X by the central
projection [P ] = [A] [P 0

C ] [B], where B and [P 0
C ] are given by

(6).

Theorem 10. (parallel projection criterion.)
A curve Z ⊂ R3 projects to a curve X ⊂ R2 by a parallel
projection if and only if there exist c1, c2 ∈ R and an ordered
triplet (i, j, k) ∈ {(1, 2, 3), (1, 3, 2), (2, 3, 1)} such that X is
A(2)-equivalent to

Z̃i,j,k
c1,c2 =

n

(zi + c1 zk, zj + c2 zk)
˛

˛

˛ (z1, z2, z3) ∈ Z
o

(7)

Proof. (⇒)Assume there exists a parallel projection [P ]
such that [X ] = [P ] [Z]. Then [P ] can be represented by a
matrix:

P =

0

@

p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

1

A (8)

of rank 3. Therefore there exist 1 ≤ i < j ≤ 3 such that the

rank of the submatrix

„

p1i p1j

p2i p2j

«

is 2. Then for 1 ≤ k ≤
3, such that k 6= i and k 6= j, there exist c1, c2 ∈ R, such

that

„

p1k

p2k

«

= c1

„

p1i

p2i

«

+ c2

„

p1j

p2j

«

. We define A :=
0

@

p1i p1j p14

p2i p2j p24

0 0 1

1

A and define B to be the matrix whose

columns are vectors b∗i := (1, 0, 0, 0)T, b∗j := (0, 1, 0, 0)T,
b∗k := (c1, c2, 1, 0)T, b∗4 = (0, 0, 0, 1)T. We observe that

[A][P 0
P ][B] = [P ], where P 0

P :=

0

@

1 0 0 0
0 1 0 0
0 0 0 1

1

A . Since

[P 0
P ][B][Z] = [Z̃i,j,k

c1,c2 ], then [X ] = [A][Z̃i,j,k
c1,c2 ]. Observe that

[A] ∈ A(2) and the direct statement is proved.

(⇐) To prove the converse direction we assume that there
exist [A] ∈ A(2), two real numbers c1 and c2, and a triplet
of indices such that (i, j, k) ∈ {(1, 2, 3), (1, 3, 2), (2, 3, 1)},
such that [X ] = [A][Z̃i,j,k

c1 ,c2 ], where a planar curve Z̃i,j,k
c1,c2 is

given by (7). Let B be a matrix defined in the first part of
the proof. A direct computation shows that Z is projected
to X by the parallel projection [P ] = [A][P 0

P ][B].

The families of curves Z̃i,j,k
c1,c2 given by (7) have a large over-

lap. The following corollary eliminates this redundancy and,
therefore, is useful for practical computations. A proof can
be found in [6].

Corollary 11. (reduced parallel projection cri-
terion.) A curve Z ⊂ R3 projects to X ⊂ R2 by a parallel
projection if and only if there exist a1, a2, b ∈ R such that
the curve X is A(2)-equivalent to one of the following planar
curves:

Z̃a1,a2 =
n

(z1 + a1 z3, z2 + a2 z3)
˛

˛

˛ (z1, z2, z3) ∈ Z
o

,

Z̃b =
n

(z1 + b z2, z3)
˛

˛

˛ (z1, z2, z3) ∈ Z
o

, (9)

Z̃ =
n

(z2, z3)
˛

˛

˛ (z1, z2, z3) ∈ Z
o

.

4. GROUP-EQUIVALENCE PROBLEM
Theorems 9 and 10 reduce the projection problem to the

problem of establishing group-action equivalence between
a given curve and a curve from a certain family. A va-
riety of methods exist to solve group-equivalence problem
for curves. We base our algorithm on the differential sig-
nature construction described in [7]. Differential signature
proposed there solves local equivalence problem for smooth
curves. We adapt this construction to the algebraic setting
and prove that differential signature gives a solution of global
equivalence problem in the case of algebraic curves. For this
purpose, we introduce a notion of a differentially separating
set of rational invariants. We discuss the possibility of us-
ing some other methods for solving equivalence problem in
Section 7.

4.1 Differential invariants for planar curves
A rational action of an algebraic group G on R2 can be

prolonged to an action on the n-th jet space Jn = Rn+2

with coordinates (x, y, y(1), . . . , y(n)) as follows.4 For a fixed
g ∈ G, let (x̄, ȳ) = g · (x, y). Then x̄, ȳ are rational functions
of (x, y) and

g · (x, y, y(1), . . . , y(n)) = (x̄, ȳ, ȳ(1), . . . , ȳ(n)), where

ȳ(1) =
d

dx

ˆ

ȳ(x, y)
˜

d
dx

ˆ

x̄(x, y)
˜ and for k = 1, . . . , n − 1

ȳ(k+1) =

d
dx

h

ȳ(k)(x, y, y(1), . . . , y(k))
i

d
dx

[x̄(x, y)]
. (10)

In (10), d
dx

is the total derivative, applied under assumption

that y is function of x.5 We note that a natural projection
πn

k : Jn → Jk, k < n is equivariant with respect to action
(10).

4Here y = y(0) and J0 = R2.
5We note the duality of our view of variables y(k). On one
hand, they are viewed as independent coordinate functions
on Jn. On the other hand, operator d

dx
is applied under



Definition 12. A function on Jn is called a differential
function. The order of a differential function is the maxi-
mum value of k such that the function explicitly depends on
the variable y(k).

A differential function which is invariant under action
(10) is called a differential invariant.

Remark 13. Due to equivariant property of the projec-
tion πn

k : Jn → Jk, k < n, a differential invariant of order
k on Jk can be viewed as a differential invariant on Jn for
all n ≥ k.

Definition 14. Let G act on RN . A set I of rational in-
variants is separating on a subset W ⊂ RN if W is contained
in the domain of definition of each I ∈ I and ∀w1, w2 ∈ W

I(w1) = I(w2), ∀I ∈ I ⇐⇒ ∃g ∈ G such that w1 = g · w2.

Definition 15. Let r-dimensional algebraic group G act
on R2. Let K and T be rational differential invariants of
orders r − 1 and r, respectively. The set I = {K, T} is called
differentially separating if K separates orbits on a Zariski
open subset W r−1 ⊂ Jr−1 and I = {K, T} separate orbits
on a Zariski open subset of W r ⊂ Jr.

4.2 Jets of curves and signatures
In this section, we assume that X ⊂ R2 is an irreducible

algebraic curve, different from a vertical line. Let F (x, y) be
an irreducible polynomial, whose zero set equals to X . Then
the derivatives of y with respect to x are rational functions
on X , whose explicit formulas are obtained by implicit dif-
ferentiation:

y
(1)
X

= −
Fx

Fy
,

y
(2)
X

=
−Fxx F 2

y + 2 Fxy Fx Fy − Fyy F 2
x

F 3
y

, . . .

Definition 16. The n-th jet of a curve X ⊂ R2 is a
rational map jn

X : X → Jn, where for p ∈ X

jn
X (p) =

“

x(p), y(p), y
(1)
X (p), . . . , y

(n)
X (p)

”

.

From (10) it follows that jn
g·X (g · p) = g · [jn

X (p)] (11)

Definition 17. A restriction of a rational differential fun-
ction Φ: Jn → R to a curve X is a composition of Φ with
the n-th jet of curve, i. e. Φ|X = Φ ◦ jn

X . If defined, such
composition produces a rational function X → R.

Definition 18. Let I = {K, T} be a differentially sepa-
rating set of invariants for the G-action (see Definition 15).
Then a point p ∈ X is called I-regular if: (1) p is a non-
singular point of X ; (2) jr−1

X (p) ∈ W r−1 and jr
X (p) ∈ W r;

(3) ∂K

∂y(r−1)

˛

˛

˛

jr−1
X

(p)
6= 0 and ∂T

∂y(r)

˛

˛

˛

jr
X

(p)
6= 0.

An algebraic curve X ⊂ R2 is called non-exceptional with
respect to I if all but a finite number of its points are I-
regular.

Remark 19. If X is non-exceptional with respect to I
then K|X and T |X are rational functions on X . The I-
regular points of X are in the domain of the definition of
these functions.

assumption that y is a function of x and, therefore, y(k)

is also viewed as the k-th derivative of y with respect to x.
(The same duality of view appears in calculus of variations.)

Definition 20. Let I = {K, T} be a differentially sep-
arating set of invariants with respect to G-action and X
be non-exceptional with respect to I. The signature SX

is the image of the rational map S|X : X → R2 defined by
SX (p) = (K|X (p) , T |X (p)).

Theorem 21. (group-equivalence criterion.)
Assume that irreducible algebraic curves X1 and X2 are non-
exceptional with respect to differentially separating invari-
ants I = (K, T ) under G-action. Then X1 and X2 are G-
equivalent if and only if their signatures are equal:

X1
∼=G X2 ⇐⇒ SX1 = SX2 .

We make the following remarks before proving the theorem.

Remark 22. Let I = {K, T} be a set of differentially
separating invariants (see Definition 15). Let X ⊂ R2 be
a non I-exceptional curve defined by an irreducible implicit

equation F (x, y) = 0. Then K|X (x, y) = k1(x,y)
k2(x,y)

, T |X =
t1(x,y)
t2(x,y)

, where k1, k2 and t1, t2 are pairs of polynomials with

no non-constant common factors modulo F . Consider an
ideal

X := 〈F, k2 κ − k1, t2 τ − t1, k2 t2 σ − 1〉 ⊂ R[κ, τ, x, y, σ].

The algebraic closure SX of the signature set SX is the va-
riety of the radical of the elimination ideal X̂ = X ∩R[κ, τ ].

Remark 23. We note that dimSX = 0 if and only if
KX and TX are constant functions on X and dimSX = 1
otherwise. In the latter case, SX is an algebraic planar curve
with a single irreducible defining equation ŜX (κ, τ ) = 0. The
equality of signatures for two curves, SX1 = SX2 , implies

ŜX1(κ, τ ) is equal up to a constant multiple to ŜX2(κ, τ ).
The converse is true over C, but not over R, because the
latter is not an algebraically closed field (see [10]).

Proof of Theorem 21. Direction =⇒ follows immedi-
ately from the definition of invariants. Below we prove ⇐=.
We notice that there are two cases. Either K|X1 and K|X2

are constant maps on X1 and X2, respectively, and these
maps take the same value. Otherwise both K|X1 and K|X2

are non-constant rational maps on X1 and X2, respectively.
Case 1: There exists c ∈ R such that K|X1(p1) = c and

KX2(p2) = c for all p1 ∈ X1 and for all p2 ∈ X2. Since X1

and X2 are non-exceptional, we may fix IG-regular points
p1 = (x1, y1) ∈ X1 and p2 = (x2, y2) ∈ X2. Then, due to
separation property of the invariant K, ∃g ∈ G such that
jr−1
X1

(p1) = g · [jr−1
X2

(p2)]. We consider a new algebraic curve
X3 = g · X2. Then due to (11), we have

jr−1
X1

(p1) = jr−1
X3

(p1) =: p(r−1). (12)

Since p1 is a I-regular point of X1, it follows from (12)
that it is also a I-regular point of X3 and, in particular, is
non-singular. Let F1(x, y) = 0 and F3(x, y) = 0 be implicit
equations of X1 and X3, respectively. We may assume that
∂F1
∂y

(p1) 6= 0 and ∂F3
∂y

(p1) 6= 0 (otherwise, ∂F1
∂x

(p1) 6= 0 and
∂F3
∂x

(p1) 6= 0 and we may use a similar argument). Then,
there exist functions f1(x) and f3(x), analytic on an interval
I ∋ x1, such that F1(x, f1(x)) = 0 and F3(x, f3(x)) = 0 for
x ∈ I1.

Functions y = f1(x) and y = f3(x) are local analytic
solutions of differential equation

K(x, y, y(1), . . . , y(r−1)) = c (13)



with the same initial condition f
(k)
1 (x1) = f

(k)
3 (x1), k =

0, . . . , r − 1 prescribed by (12). From the I-regularity of p1,

we have that ∂K

∂y(r−1)

˛

˛

˛

p(r−1)
6= 0 and so (13) can be solved

for y(r−1):

y(r−1) = H(x, y, y(1), . . . , y(r−2)), (14)

where function H is smooth in a neighborhood p(r−1) ∈
Jr−1. From the uniqueness theorem for the solutions of
ODEs, it follows that f1(x) = f3(x) on an interval I ∋ x1.
Since X1 and X3 are irreducible algebraic curves it follows
that X1 = X3. Therefore, X1 = g · X2.

Case 2: K|X1 and K|X2 are non-constant rational maps.
Then SX1 = SX2 is a one-dimensional set that we will de-

note S . Let Ŝ(κ, τ ) = 0 be the implicit equation for S (see

Remark 22). We know that ∂Ŝ
∂τ

(κ, τ ) 6= 0 for all but finite
number of values (κ, τ ), because, otherwise, K|X1 and K|X2

are constant maps. Therefore, since the curves are non-
exceptional, there exists I-regular points p1 = (x1, y1) ∈ X1

and p2 = (x2, y2) ∈ X2 such that

K|X1(p1) = K|X2(p2) =: κ0, T |X1(p1) = T |X2(p2) =: τ0

and
∂Ŝ

∂τ
(κ0, τ0) 6= 0. (15)

Due to separation property of the set IG = {K, T}, ∃g ∈
G such that jr

X1
(p1) = g · [jr

X2
(p2)]. We consider a new

algebraic curve X3 = g · X2. Then due to (11), we have

jr
X1

(p1) = jr
X3

(p1) =: p(r). (16)

From (15), (16) and I-regularity of the point p1 ∈ X1 it
follows that

K(p(r)) = κ0, T (p(r)) = τ0 and
∂T

∂y(r)

˛

˛

˛

˛

p(r)

6= 0 (17)

Since p1 is a I-regular point of X1, it follows from (16)
that it is also a I-regular point of X3 and, in particular, is
non-singular. Let F1(x, y) = 0 and F3(x, y) = 0 be implicit
equations of X1 and X3, respectively. We may assume that
∂F1
∂y

6= 0 and ∂F3
∂y

6= 0 (otherwise, ∂F1
∂x

6= 0 and ∂F3
∂x

6= 0 and

we may use a similar argument). Then, there exist functions
f1(x) and f3(x), analytic on an interval I ∋ x1, such that
F1(x, f1(x)) = 0 and F3(x, f3(x)) = 0 for x ∈ I1.

Then functions y = f1(x) and y = f3(x) are local analytic
solutions of differential equation

Ŝ
“

K(x, y, y(1), . . . , y(r−1)) , T (x, y, y(1), . . . , y(r))
”

= 0 (18)

with the same initial condition f
(k)
1 (x1) = f

(k)
3 (x1), k =

0, . . . , r, dictated by (16).

Since ∂Ŝ
∂τ

(κ0, τ0) 6= 0 and ∂T

∂y(r)

˛

˛

˛

p(r)
6= 0 (see (15) and

(17)), equation (18) can be solved for y(r):

y(r) = H(x, y, y(1), . . . , y(r−1)), (19)

where function H is smooth in a neighborhood p(r) ∈ Jr .
From the uniqueness theorem for the solutions of ODE it
follows that f1(x) = f3(x) on an interval I ∋ x1. Since
X1 and X3 are irreducible algebraic curves it follows that
X1 = X3. Therefore, X1 = g · X2.

4.3 Separating sets of invariants for affine and
projective actions

In this section, we construct a differentially separating
set of rational invariants for affine and projective actions.
We will build them from classical invariants from differ-
ential geometry [8, 3]. We start with Euclidean curvature

κ = y(2)

(1+[y(1)]2)3/2 which is, up to a sign6, a differential invari-

ant of the lowest order. Higher order Euclidean differential
invariants are obtained by differentiating the curvature with
respect to the Euclidean arclength ds =

p

1 + [y(1)]2 dx,

i. e. κs = d κ
d s

= 1√
1+[y(1)]2

d κ
d x

, κss = d κs
d s

, . . . .

Affine and projective curvatures and infinitesimal arclengths
are well known, and can be expressed in terms of Euclidean
invariants [11, 19]. In particular, SA-curvature µ and in-
finitesimal SA-arclength dα are expressed in terms of their
Euclidean counterparts as follows:

µ =
3 κ (κss + 3 κ3) − 5κ2

s

9 κ8/3
, dα = κ1/3ds. (20)

By considering effects of scalings and reflections on SA(2)-
invariants, we obtain two lowest order A(2)-invariants:

KA =
(µα)2

µ3
, TA =

µαα

3µ2
. (21)

They are of order 5 and 6, respectively, and are rational
functions in jet variables.

PGL(3)-curvature η and infinitesimal arclength dρ are ex-
pressed in terms of their SA-counterparts:

η =
6µαααµα − 7µ2

αα − 9µ2
α µ

6µ
8/3
α

, dρ = µ1/3
α dα. (22)

The two lowest order rational PGL(3)-invariants are of dif-
ferential order 7 and 8, respectively:

KP = η3, TP = ηρ. (23)

Theorem 24. According to Definition 15:

(1) The set IA = {KA, TA} given by (21) is differentially
separating for the A(2)-action on R2.

(2) The set IPGL = {KP , TP} given by (23) is differen-
tially separating for the PGL(3)-action on R2.

Proposition 25.

(1) IA-exceptional algebraic curves are lines and parabo-
las.

(2) IPGL-exceptional algebraic curves are lines and conics.

Corollary 26. An IA-exceptional algebraic curve is not
A(2) equivalent to a non IA-exceptional algebraic curve. An
IPGL-exceptional algebraic curve is not PGL(3) equivalent
to a non IPGL-exceptional algebraic curve.

Theorem 24, in combination with Theorem 21, leads to a so-
lution for the projective and the affine equivalence problems
for curves. For rather technical proofs of these theorems
we refer a reader to [6]. See also [15] for related results for
smooth curves.

6The sign of κ changes when a curve is reflected, rotated
by π radians or traced in the opposite direction. A rational
function κ2 is invariant under the full Euclidean group.



5. ALGORITHMS AND EXAMPLES
The algorithms for solving projection problems based on

a combination of the projection criteria of Section 3 and the
group equivalence criterion of Section 4.

5.1 Explicit formulas for invariants
Before stating the algorithms we write out explicit formu-

las for invariants in terms of jet coordinates. Let

∆1 = 3 y(4) y(2) − 5 [y(3)]2 , (24)

∆2 = 9 y(5) [y(2)]2 − 45 y(4) y(3) y(2) + 40 [y(3)]3, (25)

then a differentially separating set of rational A(2)-invariants
(21) is given by:

KA =
(∆2)

2

(∆1)3
; (26)

TA =
1

(∆1)2
`

9 y(6) [y(2)]3 − 63 y(5) y(3) [y(2)]2

− 45 [y(4)]2 [y(2)]2 + 255 y(4) [y(3)]2 y(2) − 160 [y(3)]4
´

,

while a separating set of rational PGL(3)-invariants (23) is
given by:

KP =
729

8 (∆2)8

“

18 y(7) [y(2)]4 ∆2 − 189 [y(6)]2 [y(2)]6 (27)

+ 126 y(6) [y(2)]4 (9 y(5) y(3) y(2) + 15 [y(4)]2 y(2)

− 25 y(4) [y(3)]2) − 189 [y(5)]2 [y(2)]4 (4 [y(3)]2

+ 15 y(2) y(4)) + 210 y(5) y(3) [y(2)]2 (63 [y(4)]2 [y(2)]2

− 60 y(4) [y(3)]2 y(2) + 32 [y(3)]4) − 525 y(4)y(2)

(9 [y(4)]3 [y(2)]3 + 15 [y(4)]2 [y(3)]2 [y(2)]2

− 60 y(4) [y(3)]4 y(2) + 64 [y(3)]6) + 11200 [y(3)]8
”3

TP =
243[y(2)]4

2(∆2)4

“

2y(8)y(2) (∆2)
2 − 8y(7) ∆2(9y(6)[y(2)]3

− 36y(5) y(3)[y(2)]2 − 45[y(4)]2[y(2)]2 + 120y(4) [y(3)]2

− 40 [y(3)]4) + 504 [y(6)]3 [y(2)]5 − 504 [y(6)]2 [y(2)]3

(9 y(5) y(3) y(2) + 15 [y(4)]2 y(2) − 25 y(4) [y(3)]2)

+ 28y(6)`432[y(5)]2[y(3)]2[y(2)]3 + 243[y(5)]2y(4) [y(2)]4

− 1800 y(5) y(4) [y(3)]3 [y(2)]2 − 240y(5) [y(3)]5 y(2)

+ 540y(5) [y(4)]2 [y(3)] [y(2)]3 + 6600 [y(4)]2 [y(3)]4 y(2)

− 2000y(4) [y(3)]6 − 5175 [y(4)]3 [y(3)]2 [y(2)]2

+ 1350 [y(4)]4 [y(2)]3
´

− 2835 [y(5)]4 [y(2)]4

+ 252 [y(5)]3y(3) [y(2)]2 (9y(4) y(2) − 136 [y(3)]2)

− 35840 [y(5)]2 [y(3)]6 − 630 [y(5)]2 [y(4)] [y(2)]

(69[y(4)]2[y(2)]2 − 160[y(3)]4 − 153y(4)[y(3)]2[y(2)])

+ 2100 y(5) [y(4)]2 y(3) (72 [y(3)]4 + 63 [y(4)]2 [y(2)]2

− 193y(4)[y(3)]2y(2)) − 7875[y(4)]4(8[y(4)]2[y(2)]2

− 22y(4) [y(3)]2 [y(2)] + 9 [y(3)]4)
”

.

We adapt Definition 17 to rational curves as follows. Let
X is a rational curve parametrized by γ(t) = (x(t), y(t)),
such that x(t) is not a constant function.7 Make a recursive

7Equivalently, X is not a vertical line.

definition of the following rational functions of t:

y(1) =
ẏ

ẋ
, . . . , y(k) =

˙y(k−1)

ẋ
, (28)

where ˙ denotes the derivative with respect to the parameter.
Let Φ be a rational differential function. Then the re-

striction of Φ|γ is computed by substituting (28) into Φ. If
defined, Φ|γ is a rational function of t. The following propo-
sition follows from Proposition 25.

Proposition 27. Let X be a rational curve with a pa-
rameterization γ(t) = (x(t), y(t)), such that x(t) is not a
constant function. Then the restrictions ∆1|γ and ∆2|γ are
rational functions of t.

If ∆1|γ(t) is zero for more than a finite number of values
t, then X is either a line or a parabola and ∆1|γ(t) is zero
for all t. Otherwise, restrictions KA|γ and TA|γ are rational
functions of t.

If ∆2|γ(t) is zero for more than a finite number of val-
ues t, then γ is either a line or an irreducible conic and
then ∆2|γ(t) is zero for all t. Otherwise KP |γ and TP |γ are
rational functions on t.

5.2 Central projections
The following algorithm is based on the central projection

criterion stated in Theorem 9.

Algorithm 28. (Central projections.)

INPUT: Parameterizations Γ =
`

z1, z2, z3) ∈ Q(s)3 and γ =

(x, y) ∈ Q(t)2 of rational algebraic curves Z ⊂ R3 and X ⊂
R2, respectively, such that Γ̇ × Γ̈ 6= 0. 8

OUTPUT: The truth of the statement:

∃[P ] ∈ CP , such that X = P (Z).

STEPS:

1. if

˛

˛

˛

˛

γ̇
γ̈

˛

˛

˛

˛

=
Q(t)

0 then

if

˛

˛

˛

˛

˛

˛

Γ̇

Γ̈...
Γ

˛

˛

˛

˛

˛

˛

=
Q(s)

0

then return TRUE
else return FALSE;

2. ǫ :=
“

z1+c1
z3+c3

, z2+c2
z3+c3

”

∈ Q(c1, c2, c3, s)
2;

3. if ∆2|γ =
Q(t)

0 then

if ∃(c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
˛

˛

˛

˛

ǫ̇
ǫ̈

˛

˛

˛

˛

6=
R(s)

0 ∧ ∆2|ǫ =
R(s)

0

then return TRUE
else return FALSE.

4. return the truth of the statement:

∃ (c1, c2, c3) ∈ R3

z3 + c3 6=
R(s)

0 ∧
˛

˛

˛

˛

ǫ̇
ǫ̈

˛

˛

˛

˛

6=
R(s)

0 ∧ ∆2|ǫ 6=
R(s)

0 (29)

∧∀s ∈ R

∆2|ǫ 6=
R

0 ⇒ ∃t ∈ R

KP |ǫ =
R

KP |γ ∧ TP |ǫ =
R

TP |γ .

8Equivalently, Z is not a line.



Remark 29. In Algorithm 28, we use restrictions of dif-
ferential functions to a family of curves parametrized by
ǫ(c, s) ∈ Q(c, s)2, where c = (c1, c2, c3) determines a member
of the family and s serves to parametrize a curve in the fam-
ily. In this case, derivatives in (28) are taken with respect
to s.

Remark 30. On the first step of Algorithm 28, we con-
sider the case when X is a line. Then Z can be projected to
X if and only if Z is coplanar. If X is not a line we define,
on Step 2, a rational map ǫ that parametrizes a family of
curves. On Step 3, we consider the case when X is an irre-
ducible conic. Then Z can be projected to X if and only if
∃c such that the algebraic closure Z̃c of the image of ǫ(c, s)
is an irreducible conic. If X is neither a line nor a conic
we proceed to Step 4, where we decide if there exists c ∈ R3

such that (1) ǫ(c, s) is neither a line nor a conic 9; (2) the
signatures of the algebraic curve parametrized by γ(t) and

the curve Z̃c are the same.

Remark 31. If at least one of KP |γ(t), TP |γ(t) is a non-
constant function, Step 4 of the algorithm can be performed
as follows. Compute the implicit equation

ŜX (κ, τ ) = 0 (30)

for the signature of X by eliminating t from κ = KP |γ(t)
and τ = TP |γ(t). Then substitute κ = KP |ǫ(c, s) and τ =
TP |ǫ(c, s) into (30). The left-hand side of (30) becomes a ra-
tional function, which we denote H(c, s). Decide if there ex-
ists c ∈ R3 such that conditions (29) are satisfied, KP |ǫ(c, s),
and TP |ǫ(c, s) are non-constant rational functions and the
numerator of H(c, s) is a zero polynomial in s. If we were
solving the problem over C, this would provide a sufficient
condition for existence of a projection, but over R some ad-
ditional steps have to be taken (see Remark 23). If both
KP |γ(t) and TP |γ(t) are constant functions, then Step 4
can be preformed by deciding if there exists c, such that
both KP |ǫ(c, s) and TP |ǫ(c, s) are constant functions with
the same values as KP |γ(t), TP |γ(t), respectively. An im-
plementation over C is posted on the internet [25].

Remark 32. If the output is TRUE, then, in many cases,
we can, in addition to establishing the existence of c1, c2, c3

in Step 4 of the algorithm, find at least one of such triplets
explicitly. We then know that Z can be projected to X
by a projection centered at (−c1,−c2,−c3). We can also,
in many cases, determine explicitly a transformation [A] ∈
PGL(3) that maps X to the algebraic closure Z̃c of the image
of the map ǫ(c, s). We then know that Z can be projected to
X by the projection [P ] = [A][P 0

C ][B], where P 0
C and B are

defined by (6).

Example 33. We would like to decide if the spatial curve
Z parametrized by

Γ(s) =
`

s3, s2, s
´

, s ∈ R (Twisted Cubic)

projects to any of the four given planar curves X1, X2, X3

9For such values of c, we can prove that whether we first
specialize a value of c in ǫ(c, s) and then compute rational
functions KP |ǫ(c, s) and TP |ǫ(c, s) or we perform these op-
erations in the reverse order, we obtain the same rational
functions of s.

and X4 parametrized, respectively, by:

γ1(t) =
`

t2 , t
´

, γ2(t) =

„

t3

t + 1
,

t2

t + 1

«

,

γ3(t) =

„

t

t3 + 1
,

t2

t3 + 1

«

, γ4(t) =
`

t, t5
´

.

Let ǫ(c1, c2, c3, s) =
“

s3+c1
s+c3

, s2+c2
s+c3

”

. Curve X1 is a parabola

and so is PGL(3)-exceptional. It is known that all irre-
ducible planar conics are PGL(3)-equivalent and so, from
Theorem 9, we know that Z can be projected on X1 if there
exist c ∈ R3, such that ǫ(c, s) parametrizes a conic. This is
obviously true for c1 = c2 = c3 = 0. Indeed, on can check
that Z can be projected to X1 by projection x = z1

z3
, y = z2

z3
.

The curve X2 is not PGL(3)-exceptional. Its signature is
parametrized by a constant map:

KP |γ2(t) =
250047

12800
and TP |γ2(t) = 0, ∀t ∈ R.

Following Algorithm 28, we need to decide whether there
exists c ∈ R3, such that ǫ(c, s) does not parametrize a line
or a conic and

KP |ǫ(s) =
250047

12800
and TP |ǫ(s) = 0, ∀s ∈ R.

This is, indeed, true for c1 = c2 = 0 and c3 = 1. We can
check that Z can be projected to X2 by the a central projection
x = z1

z3+1
, y = z2

z3+1
.

The signature of X3 is parameterized by a non-constant
map:

KP |γ3 (t) = −9261

50

t7 − t4 + t

(t3 − 1)8
, TP |γ3(t) = −21

10

(t3 + 1)4

(t3 − 1)4
.

Evaluation of step 4 of Algorithm 28 yields TRUE. One can,
in fact, check that for c∗ = (1, 0, 0), the map ǫ(c∗, s) does not
parametrize a line or a conic and

KP |ǫ(c∗, s) = KP |γ3 (s) and TP |ǫ(c∗, s) = KP |γ3 (s), ∀s ∈ R.

We conclude that Z can be projected to X3. It is not difficult
to determine a possible projection: x = z3

z1+1
, y = z2

z1+1
.

It is important to observe that although Z can be projected
to each of the planar curves X1, X2, and X3, these planar
curves are not PGL(3)-equivalent. This underscores an ob-
servation made in Remark 8.

The signature of X4 is parametrized by a constant map:

KP |γ4(t) =
1029

128
and TP |γ4(t) = 0 , ∀t.

Following Algorithm 28, we need to decide whether there ex-
ists c ∈ R3, such that ǫ(c, s) does not parametrize a line or
a conic and

KP |ǫ(c, s) =
1029

128
and TP |ǫ(c, s) = 0, ∀s ∈ R.

Substitution of several values of s in the above equation yields
a system of polynomial equations for c1, c2, c3 ∈ R that has
no solutions. We conclude that there is no central projection
from Z to X4.

5.3 Parallel projections
The algorithm for parallel projections is based on the re-

duced parallel projection criterion stated in Corollary 11.
This algorithm follows the same logic but has more steps
than Algorithm 28, because we need to decide whether a



given planar curve is A(2)-equivalent to a curve parametrized
by α(s) = (z2(s), z3(s)), or to a curve parametrized by
β(b, s) = (z1(s) + b z2(s), z3(s)) for some b ∈ R, or to a curve
parametrized by δ(a1, a2, s) = (z1(s) + a1z3(s), z2 + a2z3(s))
for some a = (a1, a2) ∈ R2. Since the affine transformations
are considered, the differential function ∆2 is replaced with
∆1 (see (24)) and projective invariants are replaced with
affine invariants (see (26)). Due to its similarity to Algo-
rithm 28, we refrain from writing out the steps of the parallel
projection algorithm and content ourselves with presenting
examples. The algorithm can be found in [6].

Example 34. To decide whether the spatial curve Z
parametrized by

Γ(s) =
`

s4 + 1, s2, s
´

, s ∈ R

can be projected to X parametrized by

γ(t) =
`

t , t4 + t2
´

, t ∈ R

by a parallel projection, we start by noticing that X is not
an A(2)-exceptional curve. Its signature is parametrized by
a non-constant map:

TA|γ(t) =
100t2(3 − 14t2)2

(1 − 14t2)3
, KA|γ(t) = −5

(140t4 − 56t2 + 1)

(1 − 14t2)2
.

We first check whether X is A(2)-equivalent to a curve
parametrized by α(s) = (z2(s), z3(s)) =

`

s2, s
´

. The an-
swer is no, since α(s) defines a parabola, which is an A(2)-
exceptional curve and X is not A(2)-exceptional. We next
check if there exists b ∈ R such that X is A(2)-equivalent to
a curve parametrized by βb(s) =

`

z1(s) + b z2(s), z3(s)
´

=
`

s4 + 1 + b s2, s
´

. We evaluate invariants (21):

TA|β(b, s) =
100 s2 (3 b − 14s2)2

(b − 14s2)3
,

KA|β(b, s) =
−5 (140 s4 − 56 b s2 + b2)

(b − 14 s2)2
.

Since TA|β(1, s) = KA|γ(s) and TA|β(1, s) = TA|γ(s), ∀s
we conclude that a curve parametrized by β(1, s) is A(2)-
equivalent to X and, therefore, Z projects to X by a parallel
projection.

Example 35. We would like to decide if the spatial curve
Z parametrized by

Γ(s) =
`

s3, s2, s
´

, s ∈ R (Twisted Cubic)

projects to any of the three given planar curves X1, X2 and
X3 parametrized, respectively, by:

γ1(t) =
`

t4 + t , t2
´

,

γ2(t) =
`

t3 − t , t3 + t2
´

,

γ3(t) =

„

t

(1 + t3)
,

t2

(1 + t3)

«

(Folium of Descartes).

None of the given planar curves is A(2)-exceptional and so
none of them is A(2)-equivalent to a parabola parametrized
by α(s) =

`

s2, s
´

. We then consider a family of curves

parametrized by β(b, s) =
`

s3 + b s2, s
´

and establish that
none of the curves in the family is A(2)-equivalent to ei-
ther of X ’s. We proceed, by considering a family of curves
δ(a1, a2, s) =

`

s3 +a1 s, s2 +a2 s
´

and establish that a curve
parametrized by δ(0, 1/2, s) is A(2)-equivalent to X1 and a

curve parametrized by δ(0, 0, s) is A(2)-equivalent to X2, but
there are no real values of a1 and a2, such that a curve
parametrized by δ(a1, a2, s) is A(2)-equivalent to X3.

We conclude that there are parallel projections of Z to
both X1 and X2, but not to X3. Note that X1 and X2 are
not A(2)-equivalent (their signatures have different implicit
equations). This underscores an observation made in Re-
mark 8.

6. PROJECTION PROBLEM FOR FINITE
LISTS OF POINTS

In [2, 1], the authors present a solution to the problem
of deciding whether or not there exists a parallel projection
of a list Z = (z1, . . . , zm) of m points in R3 to a list X =
(x1, . . . ,xm) of m points in R2, without finding a projection
explicitly. They identify the lists Z and X with the elements
of certain Grassmanian spaces and use Plüker embedding of
Grassmanians into projective spaces to explicitly define the
algebraic variety that characterizes pairs of sets related by
a parallel projection.

We indicate here how our approach leads to an alternative
solution for the projection problem for lists of points. Details
of this adaptation appear in the dissertation [5]. The pro-
jection criterion of Theorem 9 adapt to finite lists of points
as follows:

Theorem 36. (central projection criterion for fi-
nite lists.) A given list Z = (z1, . . . , zm) of m points in
R3 with coordinates zl = (zl

1, z
l
2, z

l
3), l = 1 . . . m, projects

onto a given list X = (x1, . . . ,xm) of m points in R2 with
coordinates xl = (xl, yl), l = 1 . . . m, by a central projection
if and only if there exist c1, c2, c3 ∈ R and [A] ∈ PGL(3),
such that

[xl, yl, 1]T = [A][zl
1 + c1, zl

2 + c2, zl
3 + c3]

T for l = 1 . . . m.

The proof of Theorem 36 is a straightforward adaptation of
the proof of Theorem 9. The parallel projection criteria for
curves, given in Theorem 10 and Corollary 11, are adapted
to the finite lists in an analogous way.

The central and the parallel projection problems for lists
of m points is therefore reduced to a modification of the
problems of equivalence of two lists of m points in PR2 un-
der the action of PGL(3) and A(2) groups, respectively. A
separating set of invariants for lists of m points in PR2 under
A(2)-action consists of ratios of certain areas and is listed,
for instance, in Theorem 3.5 of [20]. Similarly, a separating
set of invariants for lists of m ordered points in PR2 under
PGL(3)-action consists of cross-ratios of certain areas and
is listed, for instance, in Theorem 3.10 in [20]. In the case
of central projections we, therefore, obtain a system of poly-
nomial equations on c1, c2 and c3 that have solutions if and
only if the given set Z projects to the given set X and ana-
log of Algorithms 28 follows. The parallel projections are
treated in a similar way.

A solution of the projection problem for lists of points
does not provide an immediate solution to the discretiza-
tion of the projection problem for curves. Indeed, let Z =
(z1, . . . , zm) be a discrete sampling of a spatial curve Z and
X = (x1, . . . ,xm) be a discrete sampling of a planar curve
X . It might be impossible to project the list Z onto X, even
when the curve Z can be projected to the curve X . Some
approaches to the discretization of the projection algorithms
for curves are discussed in the next section.



7. FURTHER RESEARCH
The projection criteria developed in Section 3 reduce the

problem of object-image correspondence for curves under
a projection from R3 to R2 to a variation of the group-
equivalence problem for curves in R2. We use differential
invariants to address the group-equivalence problem. In
practical applications, curves are often given by samples of
points. In this case, invariant numerical approximations of
differential invariants presented in [7, 4] may be used. Dif-
ferential invariants and their approximations are highly sen-
sitive to image perturbations and, therefore, are not prac-
tical in many situations. Other types of invariants, such as
semi-differential (or joint) invariants [23, 20] and integral
invariants [21, 16, 13] are less sensitive to image perturba-
tions and may be employed to solve the group-equivalence
problem.

One of the essential contributions of [2, 1] is the definition
of an object/image distance between ordered sets of m points
in R3 and R2, such that the distance is zero if and only if
these sets are related by a projection. Since, in practice, we
are given only an approximate position of points, a “good”
object/image distance provides a tool for deciding whether
a given set of points in R2 is a good approximation of a
projection of a given set of points in R3. Defining such
object/image distance in the case of curves is an important
direction of further research.

Our algorithm establishes existence of a projection, but
does not compute a possible projection map (see Remark 32).
Algorithmic reconstruction of a projection is another inter-
esting question to consider.
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