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Inductive Construction of Moving Frames

Irina A. Kogan

Abstract. This paper presents a useful variation on the moving frame con-
struction, which allows us to use a moving frame for a subgroup A of a Lie

group G to produce a moving frame for the entire group G. This algorithm is

applicable when G factors as a product of two subgroups G = A · B and auto-
matically produces functional relations among invariants of G and its factors.

1. Introduction

Elie Cartan’s method of equivalence [4] is a natural development of the Felix
Klein Erlangen program (1872), which describes geometry as the study of invariants
of group actions on geometric objects. Classically, a moving frame is an equivariant
map from the space of submanifolds (or more rigorously, from the corresponding
jet bundle) to the bundle of frames. Exterior differentiation of this map produces
a number of differential invariants. Differential invariants provide a key to the
solution of many equivalence problems and are also used in the process of reduction
of differential equations and variational problems (see for instance [5], [10], [15],
[17], [2] and [16]).

Considering moving frame constructions on homogeneous spaces, Griffiths [13]
and Green [12] observed that a moving frame can be viewed as an equivariant map
from the space of submanifolds to the group itself. Adopting this observation as a
general definition of a moving frame, Fels and Olver [8], [9] generalized the Cartan’s
method to arbitrary, not necessarily transitive, finite-dimensional Lie group actions
on a manifold, introducing a simple algorithm for constructing moving frames and
differential invariants. According to this algorithm the moving frame construction
reduces to solving a system of algebraic equations. This last step might become
trivial or very difficult depending on the group action we consider.

Not surprisingly, the construction of moving frames and differential invariants is
simpler when the acting group has fewer parameters. Thus, it is desirable to use the
results obtained for a subgroup A ⊂ G to construct a moving frame and differential
invariants for the entire group G. The inductive algorithm presented here allows us,
in the case when the group G factors as a product, to extend a moving frame for
a subgroup to the entire group. As a byproduct one obtains at the same time the
relations among the invariants of group G and its subgroup A. It worth remarking
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that, in order to obtain such relations, the algorithm does not require the explicit
fromulae for the invariants of either G or A, but only the corresponding moving
frames (or normalizations) which lead to these invariants.

We illustrate the algorithm by making an induction from the Euclidean action
on plane curves to the special affine action, and then to the action of the entire
projective group, which leads to the expression of the affine invariants in terms of
the Euclidean ones and the projective invariants in terms of the affine ones. These
are classical actions whose differential invariants are well known (for instance, see
[3], [6], [8]). The actions of all three groups play an important role in computer
image processing [7], [19]. An alternative derivation of the affine curvature in terms
of the Euclidean appears in [3], while the expression for the projective curvature in
terms of the affine can be found in [7]. Some higher dimensional examples, including
the derivation of the affine invariants in terms of the Euclidean for curves in R3,
were also computed, but not included here to keep the presentation short.

2. The Method of Moving Frames

Given a manifold M of dimension m and an integer 1 ≤ p ≤ m, we let
Jk = Jk(M,p) denote the k-th order jet bundle, whose fiber over z ∈ M consists
of equivalence classes of p-dimensional submanifolds of M under the equivalence
relation of k-th order contact at z. The infinite jet bundle J∞ = J∞(M,p) is de-
fined as the inverse limit of the finite jet bundles under the standard projections
πk+1

k : Jk+1 → Jk. We will identify functions and differential forms on Jk with
their pull backs to any higher order jets including J∞.

Let U be a coordinate chart on M . We arbitrarily divide the set of coordinate
functions on U into two subsets: the set of independent variables x1, ..., xp and
the set of dependent variables u1, . . . uq, where p + q = m. The k-th jets of all
submanifolds S ⊂ U which satisfy the transversality condition dx1 ∧ · · · ∧ dxp|S 6=
0 form a coordinate chart Uk ⊂ Jk which can be parameterized by coordinate
functions x1, . . . , xp, uα

J , where i = 1, . . . , p, α = 1, . . . , q and J = (j1, . . . , jk), with
0 ≤ jν ≤ p, is a symmetric multi-index of length |J | = k.

The cotangent bundle over J∞ has a distinguished sub-bundle C, whose sections
are identically zero when restricted to a jet of any p-dimensional submanifold of
M . In local coordinates C is spanned by the forms θα

J = duα
J −

∑p
i uα

J,idxi, α =
1, . . . , q, 0 ≤ |J |. The differential ideal generated by one-forms in C is called contact
ideal. On a local chart we can define a complementary horizontal sub-bundle H
spanned by the forms dx1, . . . , dxp. This splitting induces a bigrading on the algebra
of differential forms

∧
T ∗J∞. For any differential form λ, we let πHλ denote its

purely horizontal component and πV λ denote its purely contact component. There
is also a corresponding splitting of the tangent bundle over J∞. In particular, the
vector fields on J∞, which are annihilated by any contact form, form a sub-bundle
of total (or horizontal) vector fields.

A smooth action of a Lie group G on M can be uniquely prolonged to a smooth
action on J∞ under the condition that it preserves contact ideal. By definition, a
k-th order differential invariant of G is a function on Jk which is invariant under
the prolonged action.

We will review the basic steps of the moving frame construction presented in
[9].
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Definition 2.1. A k-th order (right) moving frame is a smooth right G-
equivariant map ρ(k) from an open subset of Jk to G:

(1) ρ(k)(g · z(k)) = ρ(k)(z(k)) · g−1,

for all g ∈ G such that z(k) and g · z(k) ∈ Jk are in the domain of definition of ρ.

The existence of a moving frame on a jet bundle can be deduced from the
following two theorems. See [9] for the proof of the first theorem and [18], [16] for
the proof of the second one.

Theorem 2.2. Let a Lie group G act on a manifold N . Then there exists a
G-equivariant map from a neighborhood of each point in N to the group G if and
only if G acts freely and regularly.

The last condition of the theorem means that every point of N has arbitrar-
ily small neighborhoods whose intersection with each orbit is a connected subset
thereof.

Theorem 2.3. Let G be a Lie group that acts locally effectively on each open
subset of M . Then there is a minimal order n ≤ r = dim G, such that the prolonged
action of G on Jk is locally free on some open and dense subset Vk ⊂ Jk for each
k ≥ n.

By definition, local freeness of the action means that the isotropy group of each
point is discrete. The order n in the theorem above is called the order of stabilization
and the subsets Vk are called regular.

We notice that the conclusion of the second theorem is weaker than the as-
sumption of the first one. It guarantees, however, that all orbits on Vn have the
same dimension r = dim G. Using the Frobenius theorem, one can construct a
submanifold Kn, which is transversal the orbits on an open neighborhood of a point
z(n) ∈ Vn, and has complementary dimension. Such manifold is called a cross-
section to the orbits. (A similar construction appears in the proof of Theorem 3.4
below.) If the action is regular then by shrinking Kn we can make it intersect each
orbit no more than once. Let us assume for a moment that the action is free and
regular. Then the moving frames (1) near Kn is defined by the condition

ρ(z(n)) · z(n) ∈ Kn

Since each orbit intersects K at a unique point, then

(2) ρ(z(n)) · z(n) = ρ(g · z(n)) · (g · z(n))

and this leads to the right equivariance condition (1) due to the freeness assumption.

Remark 2.4. For a locally free, not necessarily regular action on Vn, which is
guaranteed by Theorem (2.3), a moving frame can be defined in a similar fashion.
In this case, however, the equivariant condition (1) will hold only when g belongs
to some open neighborhood of the identity in G which may depend on z(n).

The cross-section Kn and the moving frame ρ can be extended to any higher
order regular set Vk, including V∞ ⊂ J∞, by defining Kk = {z(k)|πk

nz(k) ∈ Kn} and
ρ(z(k)) = ρ

(
πk

n(z(k))
)

for k = n, . . . ,∞.

Remark 2.5. Despite the locality of the moving frame definition, we will adopt
a global notation, therefore writing ρ : J∞ → G, while, in fact, the domain and the
range of ρ are some open subsets of J∞ and G respectively.
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Given a moving frame, one can define a process of invariantization (see [9],
[16]) which will project the space of differential forms (in particular functions) on
J∞ onto the space of invariant differential forms (functions). We start by lifting
the prolonged G action to the space B = G× J∞:

h · (g, z(∞)) = (gh−1, h · z(∞)),

where g, h ∈ G. We also introduce maps w : B → J∞ to be defined by the prolonged
group action: w(g, z(∞)) = g · z(∞), and σ : J∞ → B to be defined via a moving
frame: σ(z(∞)) = (ρ(z(∞)), z(∞)). We note that w is a G-invariant map, while σ
is a G-equivariant map. Thus their composition w ◦ σ(z(∞)) = ρ(z(∞)) · z(∞) is a
G-invariant projection J∞ −→ K∞.

The cotangent bundle T ∗B over B is a direct sum of the bundles T ∗G and
T ∗J∞. This induces a bigrading on

∧
T ∗B. For a differential form λ̃ on B we let

πGλ̃ denote the purely group component of λ̃ and πJ λ̃ its purely jet component. If
λ̃ is a one-form then λ̃ = πGλ̃ + πJ λ̃ = πGλ̃ + πH λ̃ + πV λ̃.

Definition 2.6. The invariantization of a differential form λ on J∞ is the
invariant differential form

(3) ι(λ) = σ∗ (πJ(w∗λ)) .

In the case of functions (zero forms) (3) reduces to

(4) ι(f)(z(∞)) = σ∗w∗(f)(z(∞)) = f
(
ρ(z(∞)) · z(∞)

)
.

Geometrically, invariantization of a differential form λ (or function f) is the unique
invariant differential form (function) which agrees with λ (or f) on the cross-section
K∞. We note also that both w∗λ and πJw∗λ are invariant forms on B.

Invariantization of the coordinate functions:

Hi = ι(xi), i = 1, . . . , p, Iα
J = ι(uα

J ), α = 1, . . . , q,

provide a complete (or fundamental) set of local differential invariants on J∞, in a
sense that every other local differential invariant can be expressed as a function of
these invariants.

Invariantization of the basis one-forms dx1, ..., dxp, θα
J :

$i = ι(dxi) = σ∗ dJ w∗ (xi), i = 1, . . . , p,

ϑα
J = ι(θα

J ) = σ∗ πJ w∗ (θα
J ), α = 1, . . . , q

produces an invariant coframe on J∞. We note that invariantization preserves
contact the sub-bundle C of T ∗J∞, but the horizontal sub-bundle H is not generally
preserved under invariantization. We can decompose $i = ι(dxi) = ωi + ηi, i =
1, . . . , p, where the non-zero horizontal forms

(5) ωi = σ∗ πH w∗(dxi) = σ∗ dH w∗ (xi)

are invariant up to a contact form, that is, g∗ωi = ωi + Θi, for some contact one-
forms Θi. Forms with such transformation property are called contact invariant.
By adding contact forms ηi to ωi one obtains fully invariant forms $i. Forms
ωi, i = 1, . . . , p are linearly independent. The total vector fields Di, i = 1, . . . , p, dual
to ωi, form a complete set of invariant differential operators, which map differential
invariants to differential invariants of higher order. See [17] for further details.
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Example 2.7. Let us consider the action of the special Euclidean group
SE(2) = SO(2) n R2 on plane curves u = u(x). Its first prolongation, given by

x 7→ cos(α)x− sin(α)u + a,

u 7→ sin(α)x + cos(α)u + b,(6)

ux 7→ sin(α) + cos(α)ux

cos(α)− sin(α)ux

defines a free action on J1(R2, 1). A moving frame on J1(R2, 1) can be obtained
by choosing a cross-section {x = 0, u = 0, ux = 0}. Then an equivariant map
J1(R2, 1) → SE(2) is found by setting expressions (6) equal to zero and solving for
the groups parameters:

(7) α = − arctan(ux), a = − uxu + x√
1 + u2

x

, b =
uxx− u√

1 + u2
x

.

The corresponding element of the special Euclidean group can be written in a matrix
form:

ρ =


1√

1+u2
x

ux√
1+u2

x

− uux+x√
1+u2

x

− ux√
1+u2

x

1√
1+u2

x

xux−u√
1+u2

x

0 0 1

 .

A fundamental set of k-th order differential invariants can be obtained by prolonging
the action to Jk and normalizing the group parameters, that is by substituting (7)
into the formulae. For instance, the forth order prolongation is given by:

uxx 7→ uxx

∆3
,

uxxx 7→ ∆uxxx + 3 sin(α)u2
xx

∆5
,(8)

uxxxx 7→ ∆2uxxxx + 10 sin(α)∆uxxuxxx + 15 sin2(α)u3
xx

∆7
,

where ∆ = cos(α) − sin(α)ux. Substitution of (7) into (8) produces fourth order
differential invariants:

Ie
2 =

uxx

(1 + u2
x)3/2

,

Ie
3 =

(1 + u2
x)uxxx − 3uxu2

xx

(1 + u2
x)3

,(9)

Ie
4 =

(1 + u2
x)2uxxxx − 10uxuxxuxxx(1 + u2

x) + 15u2
xu3

xx

(1 + u2
x)9/2

.

We note that Ie
2 = κ, the Euclidean curvature, Ie

3 = κs = dκ
ds , where ds =√

1 + u2
x dx is infinitesimal arc length, but Ie

4 = κss + 3κ3 (instead of just κss),
according to recurrence formula (13.4) in [9]. The contact invariant differential
form equals to ω = σ∗(dH w∗x) =

√
1 + u2

x dx = ds. The dual total vector field
D = 1√

1+u2
x

Dx = d
ds provide an invariant differential operator, such that any other

invariant can be expressed as a function of κ and its derivatives with respect to D.

Remark 2.8. Lack of space precludes us from a detailed comparison of the
classical method of moving frames as presented, for instance, in [4] and [14], with
its generalization [9] described above. We note, however, that all classical moving
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frames lead to equivariant maps from a jet bundle to the group under consideration,
while certainly not every such map can be described as an invariant section of a
frame bundle. Classical differential invariants are obtained by pulling back the
invariant coframe on G under this equivariant map, which may lead to a different
(but equivalent) set of fundamental invariants.

3. A Moving Frame Construction for a Group that Factors as a
Product.

We say that a group G factors as a product of its subgroups A and B if G = A·B,
that is, for any g ∈ G there are a ∈ A and b ∈ B such that g = ab. We reproduce
two useful statements from [11].

Theorem 3.1. Let G be a group, and let A and B be two subgroups of G. Then
the following conditions are equivalent:

a) the reduction of the natural action of G on G/B to A is transitive,
b) G = A ·B,
c) G = B ·A,
d) the reduction of the natural action of G on G/A to B is transitive.

Corollary 3.2. The reduction of the natural action of G on G/B to A is free
and transitive if and only if G = A ·B (or G = B ·A) and A ∩B = e.

Remark 3.3. If G = A ·B and A∩B = e, then for each g ∈ G there are unique
elements a ∈ A and b ∈ B such that g = ab. In this case the manifolds A× B and
G are diffeomorphic (although they are not in general isomorphic as groups). In
the case when A ∩B is discrete then A×B is locally diffeomorphic to G.

The following theorem plays a central role in our construction.

Theorem 3.4. Let A and B act regularly on a manifold M , and assume that
in a neighborhood U of a point z0 ∈ M the infinitesimal generators of the A-action
are linearly independent from the generators of the B-action. Then locally there
exists a submanifold KA through the point z0, which is transverse to the orbits of
the subgroup A and is invariant under the action of the subgroup B.

Proof. Let a be the dimension of the A-orbits, b be the dimension of the B-orbits
on U and m = dim M . By Frobenius’ theorem we can locally rectify the orbits of B,
that is, we can introduce coordinates {y1, . . . , yb, x1, . . . , xm−b} such that the orbits
of B are defined by the equations xi = ki, i = 1, . . . ,m− b, where ki are some
constants. The orbits of B are integral manifolds for the distribution { ∂

∂y1
. . . ∂

∂yb
}.

The functions xi are invariant under the B-action. Let vector fields X1, . . . , Xa and
Y1, . . . , Yb be a basis for infinitesimal generators of the action of A and B respectively
in a neighborhood U containing z0 . The vector fields Yi, i = 1, . . . , b and ∂

∂xj
, j =

1 . . .m− b are linearly independent by the choice of coordinates, and their union
forms a basis in TU . We can choose c = m− b− a vector fields ∂

∂xj1
. . . ∂

∂xjc
which

are linearly independent from X1, . . . , Xa in TU . Let K be an integral manifold
through the point z0 for the involutive distribution ∆ = { ∂

∂xj1
. . . ∂

∂xjc
, ∂

∂y1
. . . ∂

∂yb
}.

By construction KA is a union of orbits of B and thus is invariant under the action
of B. On the other hand, the distribution ∆ is transverse to the infinitesimal
generators X1, . . . , Xa of the A-action, and so is transverse to the orbits of A. �
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With this result we construct a moving frame for a product of groups A and B
as follows.

Algorithm 3.5. Let G = A ·B and let A∩B be discrete. Then, as a manifold,
G is locally diffeomorphic to A × B. Let n be the order of stabilization of the
G-action. Since both A and B act locally freely on Vn ⊂ Jn and their intersection
is discrete then the infinitesimal generators of the A-action and the B-action are
linearly independent at each point of Vn and hence they satisfy the conditions of
Theorem 3.4. Thus there is a cross-section Kn

A ⊂ Vn for the action of A which is
invariant under the action of B. We use this cross-section to construct a moving
frame ρA for A. The map ρA(z(n)) · z(n) projects Vn on the cross-section Kn

A, which
is invariant under the action of B. Moreover the action of B on Kn

A is locally free
and hence we can choose a cross-section Kn ⊂ Kn

A that defines a moving frame
ρB : Kn

A → B. We can extend ρB to a map ρ̃B : Vn → B by the formula

(10) ρ̃B(z(n)) = ρB

(
ρA(z(n)) · z(n)

)
.

The map ρ̃B is A-invariant but, in contrast to ρB , it is not B-equivariant. The
cross-section Kn is transversal to the orbits of G and the map ρG defined by

(11) ρG(z(n)) = ρ̃B

(
z(n)

)
ρA(z(n)) = ρB

(
ρA(z(n)) · z(n)

)
ρA(z(n))

satisfy the condition ρG(z(n)) · z(n) ∈ Kn, and hence is a moving frame for the
G-action.

Remark 3.6. We emphasize that G-equivariance of the map ρG, claimed above,
follows from the correspondence between cross-sections to the orbits of G and G-
equivariant maps from Jn to G, discussed on page 2. On the other hand, it can be
established explicitly using B-equivariance of the map ρB and the following lemma.

Lemma 3.7. Let G = A · B act freely on a manifold N and let KA be a cross-
section for the action of A, invariant under the B-action. Then the map ρA : N →
A ⊂ G defined by the condition ρA(z) · z ∈ KA is G-equivariant up to the action of
B, that is, for any g ∈ G there exists b ∈ B such that

ρA(g · z) = bρA(z)g−1.

Proof. Let z1 = ρA(z) · z and z2 = ρA(g · z)g · z. By the definition of ρA, both
z1 and z2 belong to KA and hence from the freeness of the action it follows that
ρA(z1) = ρA(z2) = e ∈ G. Let

(12) h = ρA(g · z)gρA(z)−1 ∈ G,

then z2 = h · z1. Since G = A · B, there exist a ∈ A and b ∈ B, such that h = ab.
Then

(13) e = ρA(z2) = ρA(ab · z1) = ρA(b · z1)a−1.

The last equality follows from A-equivariance of ρA. On the other hand, b ·z1 ∈ KA,
since KA is invariant under the action of B, and thus ρA(b · z1) = e. We conclude
from (13) that a = e and hence h = b. The lemma now follows from (12). �

The cross-section Kn
A and Kn and the maps ρA and ρB can be extended to

higher order jet bundles as it was done in Section 2. The non-constant coordinate
functions of

(14) ρG(z(k)) · z(k) = ρB

(
ρA(z(k)) · z(k)

)
ρA(z(k)) · z(k), k ≥ n
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provide a complete set of k-th order differential invariants for G.

Remark 3.8. We notice that the coordinates of ρA(z(k)) · z(k) are invariant
under the A-action and thus the formula above expresses the invariants of the G-
action in terms of the invariants of its subgroup A.

We can summarize our construction in the following commutative diagram:
(15)

J∞ B × J∞-σB B ×A× J∞-σA B × J∞-wA
J∞-wB

G× J∞

σG

������������:

wG

XXXXXXXXXXXXz?

6

where the maps w are defined by the prolonged group action:

wA(b, a, z(∞)) = (b, a · z(∞)),

wB(b, z(∞)) = b · z(∞),

wG(g, z(∞)) = g · z(∞) = wB ◦ wA(b, a, z(∞)) where g = ba.

The maps σ are defined using the moving frames for A,B and G:

σA(b, z(∞)) = (b, ρA(z(∞)), z(∞)),

σB(z(∞)) = (ρ̃B(z(∞)), z(∞)) =
(
ρB

(
ρA(z(∞)) · z(∞)

)
, z(∞)

)
,

σG(z(∞)) = (ρG(z(∞)), z(∞)) = σA ◦ σB(z(∞)).

We remind the reader that although all maps are written as if they were global,
they might be defined only on open subsets of the manifolds appearing in (15). The
manifolds B×A×Jk and G×Jk are locally diffeomorphic, and this diffeomorphism
is A-equivariant. The maps wA and wG are A-invariant, whence the maps σA and
σB are A-equivariant, with respect to the A-actions on B × A× J∞, B × J∞ and
G× J∞ defined respectively by:

ã · (b, a, z(∞)) = (b, aã−1, ã · z(∞)),

ã · (b, z(∞)) = (b, ã · z(∞)),

ã · (g, z(∞)) = (gã−1, ã · z(∞)).

We note that neither σA nor σB are B-equivariant, but their composition is. As it
has been discussed in the previous section (see formula (5)) the forms

(16) ωi
G = σ∗G dH w∗G(xi), i = 1, . . . , p,

produce a contact G-invariant coframe on J∞. Since A is a subgroup of G then
the forms ωi

G retain their invariant properties under the action of A. On the other
hand, the moving frame ρA provide us with another horizontal coframe which is
contact invariant under the action of A:

ωi
A = σ∗A dH w∗A(xi), i = 1, . . . , p.

These two coframes are related by a linear transformation wi
G =

∑p
j=1 Li

jw
j
A, where

Li
j are functions on J∞ invariant under the A-action. In fact, Li

j can be explicitly
expressed in terms of the fundamental invariants of A:

(17) ωi
G = σ∗B σ∗A dH w∗A w∗B(xi) = σ∗Bσ∗AπHw∗AdHχi(b1, . . . , bl, x

1, . . . , xp, uα
J ),
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where χi = w∗Bxi is a function on B × J∞, written in local coordinates b1, . . . , bl,
x1, . . . , xp, uα

J . The forms σ∗A πH w∗A dHχi are obtained from dHχi by replacing
forms dxj with ωj

A and coordinate functions x1, , . . . , xp, uα
J with their invariantiza-

tions H(A)1, , . . . , H(A)p, I
(A)α
J . These forms provide a horizontal coframe on B×J∞

which is contact invariant with respect to the action of A. The final pull-back σ∗B
is equivalent to the replacement of parameters b1, ..., bl with the corresponding co-
ordinates of ρB(ρA(z(∞)) · z(∞)). The latter are expressed in terms of invariants of
the A-action.

In many situations the following reformulation of Theorem 3.1 enables us to
enlarge a moving frame for a transformation group A to a moving frame for a larger
group containing A.

Theorem 3.9. Let O ⊂ M be an orbit of G and let A be a subgroup which acts
transitively on O. Then G = B · A, where B is the isotropy group of a point in O.
If in addition A acts locally freely on O then A ∩B is discrete.

Let nA be the order of stabilization for A, then the action of A is (locally) free
on a subset VA ⊂ JnA(M,p). Assume that the action of A can be extended to
the action of a group G containing A, so that there is a point z0 ∈ VA such that
the orbits of A and G through z0 coincide. If this is the case, then let B be the
isotropy group of the point z0. Due to the theorem above G = B · A and A ∩ B is
discrete, and so Algorithm 3.5 can be applied. An especially favorable case is when
the action of A on the regular set VA ⊂ JnA(M,p) is transitive. Then a moving
frame for A can be extended to a moving frame for any group G containing A.

4. Examples: Euclidean, Affine and Projective Actions on the Plane.

The group of Euclidean motions on the plane is a factor of the group of special
affine motions. In turn, the group of special affine motions is a factor of the group
of projective transformations on the plane. Applying the Inductive Algorithm 3.5
we express projective invariants in terms of affine, and affine invariants in terms of
Euclidean. We also obtain the relations among the Euclidean, affine and projective
arc-lengths, and the corresponding invariant differential operators.

Example 4.1. Let us use the moving frame for the special Euclidean group
SE(2, R) acting on curves in R2 obtained in Example 2.7 to build a moving frame
for the special affine group. We recall that the moving frame for SE(2, R) has
been obtained on the first jet space by choosing the cross-section {x = 0, u =
0, ux = 0}. The special Euclidean group acts transitively on J1(R2, 1) and the first
invariant, the Euclidean curvature κ, appears on the second order of prolongation.
The normalization of uxxx and uxxxx yields the third and the fourth order invariants
Ie
3 = κs and Ie

4 = κss + 3κ3.
The special affine transformation SA(2, R) on the plane is the semi-direct

product of the special linear group SL(2, R) and translations in R2. We pro-
long it to the first jet bundle and notice that the isotropy group B of the point
z
(1)
0 = {x = 0, u = 0, ux = 0} is given by all linear transformations of the form(

τ λ
0 1

τ

)
.
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Thus SA(2, R) = B · SE(2, R) and B ∩ SE(2, R) is finite. In fact B ∩ SE(2, R) =
{I,−I}. Now we prolong the action of B up to fourth order:

x → τx + λu,

u → 1
τ

u,

ux → ux

τ(τ + λux)
,

uxx → uxx

(τ + λux)3
,

uxxx → (τ + λux)uxxx − 3λu2
xx

(τ + λux)5
,

uxxxx → (τ + λux)2uxxxx − 10(τ + λux)λuxxuxxx + 15λ2u3
xx

(τ + λux)7
.

and restrict these transformations to the Euclidean cross-section
K4

E = {z(4)|π4
1(z(4)) = z

(1)
0 } = {z(4)|x = 0, u = 0, ux = 0}, obtaining

uxx → uxx

τ3
,

uxxx → τuxxx − 3λu2
xx

τ5
,

uxxxx → τ2uxxxx − 10τλuxxuxxx + 15λ2u3
xx

τ7
.

The above action is free on the open subset {z(4) ∈ K4
E |uxx 6= 0}, where we choose

the cross-section
K(4) = {z(4) ∈ K4

E |uxx = 1, uxxx = 0}
to the orbits of B on K4

E . This produces a moving frame ρB : K4
E → B:

τ = (uxx)1/3 and λ =
uxxx

3(uxx)5/3
.

The corresponding fourth order invariant for the action of B on K4
E is

(18) Ib
4 =

uxxuxxxx − 5
3 (uxxx)2

(uxx)8/3
.

We note that K4 can be viewed as a cross-section to the orbits of the entire group
SA(2, R) on the open subset of J4 where uxx 6= 0, and that due to formula (14) the
forth order special affine invariant can be obtained by invariantization of Ib

4 with
respect to Euclidean action, that is, by substitution of the normalized Euclidean
invariants (9) into (18). Thus we obtain the expression of the lowest order special
affine invariant µ in terms of Euclidean invariants:

(19) µ = Ia
4 =

Ie
2Ie

4 − 5
3 (Ie

3)2

(Ie
2)8/3

.

One can rewrite the normalized Euclidean invariants in terms of the Euclidean
curvature and its derivatives: Ie

2 = κ, Ie
3 = κs and Ie

4 = κss + 3κ3, which leads to
the expression:

µ =
κ(κss + 3κ3)− 5

3κ2
s

κ8/3
.
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Remark 4.2. The reader might notice that the affine invariant obtained above
differs by a factor of 3 from the classical affine curvature (see, for instance, [3] p.14).
The appearance of this factor can be predicted from the recurrence formulae (13.4)
in [9].

In accordance with (11) the moving frame for the special affine group corre-
sponding to the cross-section K4 is the product of two matrices: κ1/3 1

3
κs

κ5/3 0
0 1

κ1/3 0
0 0 1




1√
1+u2

x

ux√
1+u2

x

− uux+x√
1+u2

x

− ux√
1+u2

x

1√
1+u2

x

xux−u√
1+u2

x

0 0 1

 .

Using formula (17), one can obtain an affine contact invariant horizontal form dα
in terms of the Euclidean arc-length ds:

dα = σ∗B σ∗E πH w∗E dH w∗B (x),

where the Euclidean invariantization of dH w∗B (x) = (τ +λux) dx equals to τ ds and
hence

(20) dα = σ∗B(τ ds) = (Ie
2)1/3ds = κ1/3ds.

The form dα is called the affine arc-length. Written in the standard coordinates
dα = u

1/3
xx dx. The relation (20) between the affine and the Euclidean arc-lengths

provide a natural explanation for the affine curve evolution equation in [19]. The
relation between invariant differential operators follows immediately:

d

dα
=

1
κ1/3

d

ds
,

which enables us to obtain all higher order affine invariants in terms of the Euclidean
ones.

Example 4.3. Let us now use the moving frame for the special affine group to
build a moving frame for the projective group PSL(3, R), whose local action on the
plane is given by the transformations:

x 7→ αx + βu + γ

δx + εu + ζ
,

u 7→ λx + νu + τ

δx + εu + ζ
,

where the determinant of the corresponding 3× 3 matrix equals to one. The affine
moving frame above corresponds to the cross-section

z
(3)
0 = {x = 0, u = 0, u1 = 0, u2 = 1, u3 = 0} ∈ J3.

The isotropy group B of z
(3)
0 for the prolonged action of PSL(3, R) consists of the

transformations:  1 ab 0
0 a 0
b c 1

a

 .

Thus PSL(3, R) = B · SA(2, R) and B ∩ SA(2, R) is finite. The affine cross-section
K7

A = {z(7)|π7
3(z(7)) = z

(3)
0 } = {z(7)|x = 0, u = 0, ux = 0, uxx = 1, uxxx = 0} is

invariant under the action of B. The seventh order prolongation of the B-action on
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J7 has been computed using the Maple package Vessiot [1]. The restriction of
this action to K7

A is given by

u4 → u4 − 3a2b2 + 6ac

a2
,

u5 → u5

a3
,

u6 → u6 + 3abu5 + 30u4(2ac− a2b2) + 180a2c(c− ab2) + 45a2b2

a4
,

u7 → u7 + 7abu6 + u5(105ac− 42b2a2)− 35(u4)2ab

a5
.

The above action is free on the open subset {z(7) ∈ K7
A|u5 6= 0}, where we choose a

cross-section
K7 = {z(7) ∈ K7

A|u4 = 0, u5 = 1, u6 = 0}
to the orbits of B on K7

A. This produces a moving frame ρB : K7
A → B given by

a = (u5)1/3,

b =
5(u4)2 − u6

3(u5)4/3
,

c =
(u6)2 − 10u6(u4)2 − 3u4(u5)2 + 25(u4)4

18(u5)7/3
.

The corresponding seventh order differential invariant (for the action of B on K7
A)

is

(21) Ib
7 =

6u7u5 − 7(u6)2 + 70(u4)2u6 − 105u4(u5)2 − 175(u4)4

6(u5)8/3
.

We note that K7 can be viewed as a cross-section to the orbits of the entire group
PSL(3, R) on the open subset J7, where u5 6= 0. Due to formula (14) the lowest
order projective invariant can be obtained by invariantization of Ib

7 with respect
to the affine action, that is, by substitution of the normalized affine invariants
Ia
4 = µ, Ia

5 Ia
6 and Ia

7 in (21). Note that we do not need the explicit formulae for
these invariants. Thus we obtain a seventh order projective invariant η in terms of
the special affine invariants:

η = Ip
7 =

6Ia
7 Ia

5 − 7(Ia
6 )2 + 70(Ia

4 )2Ia
6 − 105Ia

4 (Ia
5 )2 − 175(Ia

4 )4

6(Ia
5 )8/3

.

Using the recursion algorithm from [9] we can express the higher order affine invari-
ants in terms of µ and its derivatives with respect to affine arc-length dα = u

1/3
xx dx:

Ia
4 = µ, Ia

5 = µα,

Ia
6 = µαα + 5µ2, Ia

7 = µααα + 17µµα.

This leads to the formula:

η =
−7µ2

αα + 6µαµααα − 3µµ2
α

6µ
8/3
α

.

Remark 4.4. The above expression can be compared with analogous formula
(61) in [7]. Keeping in mind that the affine curvature used there differs from µ by a
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factor 1
3 , we notice that η differs from the classical projective curvature by a factor

of 6−5/3.
The moving frame for the projective group is the product of the matrices:0BBB@

1 − 1
3

µαα
µα

0

0 µ
1/3
α 0

− 1
3

µαα

µ
4/3
α

1
18

µ2
αα−3µµ2

α

µ
7/3
α

1

µ
1/3
α

1CCCA
0B@ κ1/3 1

3
κs

κ5/3 0

0 1
κ1/3 0

0 0 1

1CA
0BBB@

1q
1+u2

x

uxq
1+u2

x

− uux+xq
1+u2

x

− uxq
1+u2

x

1q
1+u2

x

xux−uq
1+u2

x
0 0 1

1CCCA .

We can express the projective arc-length (that is, a horizontal form which is contact
invariant with respect to the projective action) in terms of the affine arc-length dα.
We first lift the coordinate function x to B × J∞ by w∗B (x) = x+abu

bx+cu+ 1
a

. The affine
invariantization of dH w∗B (x) produces a horizontal form a dα on B × J∞, where
dα is the affine arc-length (20). The projective arc-length equals to

d% = σ∗B a dα = (Ia
5 )1/3dα = µ1/3

α dα.

The relation between invariant derivatives, d
d% = 1

µ
1/3
α

d
dα , allows us to obtain all

higher order projective invariants in terms of the affine ones.
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