Corrections to

Kogan, I.A., and Olver, P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.

Kogan, I.A., and Olver, P.J., The invariant variational bicomplex, Contemp. Math. 285 (2001), 131-144.

In the published paper, a sign error in equation (9.43) propagated, affecting the subsequent displayed equation, equations (9.45), (9.46), and particularly (9.47). The same errors appear on p. 142 of the Contemp. Math. note.

The corrected version of the affected text follows:

On the other hand,

$$
\begin{align*}
& d_{\mathcal{V}} \varpi^{1}=-\kappa^{1} \vartheta \wedge \varpi^{1}+\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right) \vartheta \wedge \varpi^{2} \tag{9.43}\\
& d_{\mathcal{V}} \varpi^{2}=\frac{1}{\kappa^{2}-\kappa^{1}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right) \vartheta \wedge \varpi^{1}-\kappa^{2} \vartheta \wedge \varpi^{2}
\end{align*}
$$

which yields the Hamiltonian operator complex

$$
\begin{aligned}
& \mathcal{B}_{1}^{1}=-\kappa^{1}, \\
& \mathcal{B}_{2}^{2}=-\kappa^{2},
\end{aligned} \quad \mathcal{B}_{2}^{1}=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right)=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right)=-\mathcal{B}_{1}^{2}
$$

the equality following from the commutation formula (9.35). Therefore, according to our fundamental formula (9.24), the Euler-Lagrange equations for a Euclidean-invariant variational problem (9.40) are

$$
\begin{align*}
0=\mathbf{E}(L)=[& \left.\left(\mathcal{D}_{1}+Z_{1}\right)^{2}-\left(\mathcal{D}_{2}+Z_{2}\right) \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \mathcal{E}_{1}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)^{2}-\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \mathcal{E}_{2}(\widetilde{L})+\kappa^{1} \mathcal{H}_{1}^{1}(\widetilde{L})+\kappa^{2} \mathcal{H}_{2}^{2}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)\left(\mathcal{D}_{1}+Z_{1}\right)+\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{2}\right] \cdot\left(\frac{\mathcal{H}_{2}^{1}(\widetilde{L})-\mathcal{H}_{1}^{2}(\widetilde{L})}{\kappa^{1}-\kappa^{2}}\right) \tag{9.44}
\end{align*}
$$

As before, $\mathcal{E}_{\alpha}(\widetilde{L})$ are the invariant Eulerians with respect to the principal curvatures κ^{α}, while $\mathcal{H}_{j}^{i}(\widetilde{L})$ are the invariant Hamiltonians based on (9.41).

In particular, if $\widetilde{L}\left(\kappa^{1}, \kappa^{2}\right)$ does not depend on any differentiated invariants, (9.44) reduces to

$$
\begin{equation*}
\mathbf{E}(L)=\left[\left(\mathcal{D}_{1}^{\dagger}\right)^{2}+\mathcal{D}_{2}^{\dagger} \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{1}}+\left[\left(\mathcal{D}_{2}^{\dagger}\right)^{2}+\mathcal{D}_{1}^{\dagger} \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{2}}-\left(\kappa^{1}+\kappa^{2}\right) \widetilde{L} \tag{9.45}
\end{equation*}
$$

For example, the problem of minimizing surface area has invariant Lagrangian $\widetilde{L}=1$, and so (9.45) gives the Euler-Lagrange equation

$$
\begin{equation*}
\mathbf{E}(L)=-\left(\kappa^{1}+\kappa^{2}\right)=-2 H=0, \tag{9.46}
\end{equation*}
$$

and so we conclude that minimal surfaces have vanishing mean curvature. As noted above, the Gauss-Bonnet Lagrangian $\widetilde{L}=K=\kappa^{1} \kappa^{2}$ is an invariant divergence, and hence its the Euler-Lagrange equation is identically zero. The mean curvature Lagrangian $\widetilde{L}=H=$ $\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)$ has Euler-Lagrange equation

$$
\begin{equation*}
\frac{1}{2}\left[\left(\kappa^{1}\right)^{2}+\left(\kappa^{2}\right)^{2}-\left(\kappa^{1}+\kappa^{2}\right)^{2}\right]=-\kappa^{1} \kappa^{2}=-K=0 . \tag{9.47}
\end{equation*}
$$

For the Willmore Lagrangian $\widetilde{L}=\frac{1}{2}\left(\kappa^{1}\right)^{2}+\frac{1}{2}\left(\kappa^{2}\right)^{2},[\mathbf{3}, \boldsymbol{6}]$, formula (9.44) immediately gives the known Euler-Lagrange equation

$$
\begin{equation*}
\mathbf{E}(L)=\Delta\left(\kappa^{1}+\kappa^{2}\right)+\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)\left(\kappa^{1}-\kappa^{2}\right)^{2}=2 \Delta H+4\left(H^{2}-K\right) H=0 \tag{9.48}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left(\mathcal{D}_{1}+Z_{1}\right) \mathcal{D}_{1}+\left(\mathcal{D}_{2}+Z_{2}\right) \mathcal{D}_{2}=-\mathcal{D}_{1}^{\dagger} \cdot \mathcal{D}_{1}-\mathcal{D}_{2}^{\dagger} \cdot \mathcal{D}_{2} \tag{9.49}
\end{equation*}
$$

is the Laplace-Beltrami operator on our surface.

