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Second paragraph of section 3: change J"(m,p) to J"(M,p).
In (7.16), the right hand side is missing a summation over x:

dezz {L(%)v“/\ﬁ-l—L(Dm{R) eﬁAw}. (7.16)

k=1

In (7.17), the d should be d,,:

dy,w = B() Nw, where B = i [L(Dxén) Gt —u (%) C’“] (7.17)
k=1

On page 174 in the next-to-last displayed formula, both expressions are missing minus
signs:

B:(—K,O) so that B*:<_O/i).

In (9.11), the left hand side is missing a minus sign:

—FdyoNw; = (DJTF)JAw. (9.11)
In (9.13), the = should be =:
FDW)ANw=—(D;+Z)Fy Aw=(D]F)yNw (9.13)
In (9.20), the second formula is missing a summation over i:
q P q
dy I* =" A7), dyw? =3 Y B, 0°) Ao, (9.20)
B=1 i=1 B=1
In (9.34), the Y'’s in the second pair of formulas should be reversed:
dﬂw(l):dﬂwzz—%w, leYfQ:—%,
I SO 7 (9.34)
dﬂw(z):—dﬂwlz%w, ZQ:—Yllzz%.

e thanks to Francis Valiquette for spotting many of these typos.

In the published paper, a sign error in equation (9.43) propagated, affecting the sub-
sequent displayed equation, equations (9.45), (9.46), and particularly (9.47).
The corrected version of the affected text follows:
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On the other hand,

1
dVWIZ—Hlﬁ/\wl—i—ﬁ

= (DD, — Z,Dy )9 A w?,

(9.43)

2

1 2 2
de :m('DQ'Dl—Zl'Dz)ﬁ/\w — R 19/\w,

which yields the Hamiltonian operator complex

Bl = — k!, 1
Béz_ﬁz 8527(1}1@2_227)1):

ol 2
the equality following from the commutation formula (9.35). Therefore, according to our
fundamental formula (9.24), the Euler-Lagrange equations for a Euclidean-invariant vari-
ational problem (9.40) are

1

k1l — g2 (D2D1 - lez) = _B%7

0=E(L) = [(D1 + Z1)2 — (Dy+ Zy) - Zy + (“1)2}51<z)
+ [(Dy+ 2,)° = (D, + Z,) - Z, + (K°)? |E,(L) + k' Hi(L) + x° H3(L)

+ [(Dy+ Z,)(Dy + Z)) +(Dy + Z,) - Z, ] - (7{2(3 :?:;(L) ) . (9.44)

As before, 5Q(E) are the invariant Eulerians with respect to the principal curvatures k<,
while H}(L) are the invariant Hamiltonians based on (9.41).

In particular, if Z(/fcl,mz) does not depend on any differentiated invariants, (9.44)
reduces to
% — (k' 4+ &?)L.
(9.45)
For example, the problem of minimizing surface area has invariant Lagrangian L= 1, and
so (9.45) gives the Euler-Lagrange equation

E(L)=— (k' + %) = —2H =0, (9.46)

and so we conclude that minimal surfaces have vanishing mean curvature. As noted above,
the Gauss-Bonnet Lagrangian L = K = k'x? is an invariant divergence, and hence its the
Euler-Lagrange equation is identically zero. The mean curvature Lagrangian L = H =

1 (k! 4+ k?) has Euler-Lagrange equation

HED?+ ()2 = (5" +£%)?] = k' k2= —K =0. (9.47)

B(L) = (D) + D) - Z, + ()] oor + [(D})* + D] - 7, + (5*)?]

For the Willmore Lagrangian L = L (x')2+1(x?)2, [3, 6], formula (9.44) immediately gives
the known Euler-Lagrange equation

E(L) = A(k' + %)+ 2(k' + £*)(k' —k*)* =2AH + 4(H” - K)H =0, (9.48)

where
A= (D, +7Z,)D, +(Dy+ Z,)D, = _DIT D, - DQT - D, (9.49)

is the Laplace-Beltrami operator on our surface.
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