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1. Introduction.

Most modern physical theories begin by postulating a symmetry group and then
establishing field equations based on an invariant variational problem. As first recognized
by Sophus Lie, [24], every invariant variational problem can be written in terms of the
differential invariants of the symmetry group. The associated Euler-Lagrange equations
inherit the symmetry group of the variational problem, and so can also be written in
terms of the differential invariants. Surprisingly, to date no-one has found a general group-
invariant formula that enables one to directly construct the Euler-Lagrange equations from
the invariant form of the variational problem. A few specific examples, including plane
curves and space curves and surfaces in Euclidean geometry, are worked out in Griffiths,
[18], and in Anderson’s notes, [3], on the variational bicomplex.

Example 1.1. To motivate the general formula, let us review the very simplest
geometrical example. The proper Euclidean group consists of all orientation-preserving
rigid motions. In the planar case, the group element g = (φ, a, b) ∈ SE(2) ≃ SO(2) ⋉ R

2

transforms a point z = (x, u) ∈ R
2 to the point w = (y, v) = g · z with coordinates

y = x cosφ− u sinφ+ a, v = x cosφ+ u sinφ+ b. (1.1)

A complete system of differential invariants for smooth planar curves C = {z(t)} ⊂ R
2

consists of the Euclidean curvature κ and its successive derivatives κn = Dnκ, where
D = Ds denotes invariant differentiation with respect to the standard arc length element
ω = ds = ‖

�

z ‖ dt. Every Euclidean-invariant variational problem has the form

I[u ] =

∫
L̃(κ, κs, κss, . . . ) ds, (1.2)

where the differential invariant L̃ is called the invariant Lagrangian. Since the Euler-
Lagrange equation E(L) = 0 for the usual Lagrangian L = L̃ ‖

�

z ‖ is Euclidean-invariant,
it can also be written in terms of the curvature invariants:

F (κ, κs, κss, . . . ) = 0. (1.3)

The basic problem is to go directly from the invariant form (1.2) of the variational problem
to the invariant form (1.3) of its Euler-Lagrange equation. For example, the Euler-Lagrange
equation for the arc length functional

∫
ds is −κ = 0, whose solutions are straight lines

— the arc length minimizing planar curves. Similarly, the variational problem
∫

1
2
κ2 ds

describes the Euler elastica, [12]. Its Euler-Lagrange equation, κss + 1
2κ

3 = 0, can be
solved in terms of elliptic functions, [26], and was their historical origin.

Even with these particular examples in hand, the general formula connecting (1.2) to
(1.3) is not at all obvious. As established in [3, 18], the Euler-Lagrange equation for the
general Euclidean invariant variational problem (1.2) takes the form

(D2 + κ2) E(L̃) + κH(L̃) = 0, (1.4)

where

E(L̃) =
∑

n

(−D)n
∂L

∂κn
, H(L̃) =

∑

i>j

κi−j(−D)j
∂L̃

∂κi
− L̃,
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are, respectively, the invariant Eulerian, and the invariant Hamiltonian of the invariant
Lagrangian L̃, both in direct analogy with the usual formulae for non-invariant higher order
Lagrangians, cf. [3, 10, 27, 34]. The actual Euler-Lagrange equation (1.4) is obtained by
applying certain invariant differential operators to both the Eulerian and Hamiltonian.

The main purpose of this paper is to establish an analogous, general formula relating
invariant variational problems to their invariant Euler-Lagrange equations for arbitrary
finite-dimensional transformation groups. It turns out that, in all cases, the Euler-Lagrange
equations have the invariant form

A∗E(L̃)− B∗H(L̃) = 0, (1.5)

where E(L̃) is the invariantized Eulerian, H(L̃) a suitable invariantized Hamiltonian, which
in the multivariate context is, in fact, a tensor, [34], and A∗,B∗ certain invariant differ-
ential operators, which we name the Eulerian and Hamiltonian operators . Our methods
produce an explicit computational algorithm for determining the invariant differential op-
eratorsA∗,B∗, that, remarkably, can be constructed from the formulae for the infinitesimal
generators of the transformation group action using only linear algebra and differentiation.

This result will be based on combining two powerful ideas in the modern, geometric
approach to differential equations and the variational calculus. The first is the varia-

tional bicomplex , which is of fundamental importance in the study of the geometry of jet
bundles, differential equations and the calculus of variations. The origins of the varia-
tional bicomplex can be traced back to work of Dedecker, [9]. Its modern, general form,
originates with Vinogradov, [37, 38, 39], and Tulczyjew, [36]. The later contributions of
Tsujishita, [35], and Anderson, [1, 3], have amply demonstrated the power and efficacy
of the bicomplex formalism for both local and global problems in the geometric theory of
partial differential equations and the calculus of variations. The underlying construction†

relies on the natural splitting of the space of differential forms on the infinite jet space
into horizontal and contact components. This endows the usual deRham complex with
the structure of a bicomplex, and so powerful homological algebra machinery, particularly
spectral sequences, can be unleashed to compute geometric and topological quantities
of interest, including conservation laws, variational structures, null Lagrangians, Euler-
Lagrange equations, characteristic cohomology, characteristic classes, etc. In particular,
the Euler operator or variational derivative achieves an intrinsic characterization as the
corner map of the associated “edge complex”.

The second ingredient in our method is Cartan’s moving frame theory, [8, 17, 19, 22],
as extended and generalized in the work of the second author and Fels, [14, 15]. For a
general finite-dimensional transformation group G, a moving frame is defined as an equiv-
ariant map from an open subset of jet space to the Lie group G. Once a moving frame

† The bicomplex construction relies on a choice of local bundle structure on M . An intrinsic
version can be formulated in the language of spectral sequences, based on the contact filtration of
the cotangent bundle, [39]. However, since we shall always deal with local coordinate formulae,
we have chosen to use the more down-to-earth bicomplex version here. We refer the reader to
Itskov’s recent thesis, [20, 21], for the more abstract spectral sequence version.
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is established, it provides a canonical mechanism, called invariantization, of associating
differential functions to differential invariants. Here, we formulate a general invariantiza-
tion procedure for differential forms on jet space that allows us to systematically construct
the invariant counterparts of all objects of interest in the usual variational bicomplex.
The resulting invariant variational complex provides the proper setting for studying the
interplay between symmetry groups and differential equations, variational problems, con-
servation laws, characteristic cohomology, and so on. For non-projectable group actions,
the resulting invariant complex relies on three differentials with nonstandard commutation
relations — see (5.13) below — and so is no longer a bicomplex of the usual form. For
lack of a better terminology, we name the structure a quasi-tricomplex .

The key formula relates the differentials of ordinary differential forms on the jet space
to the invariant differentials of invariant forms. In general, invariantization introduces
additional “correction terms” similar to the terms that distinguish covariant derivatives
in Riemannian geometry from ordinary derivatives. In particular, the recurrence formulae
form the basis for a complete, algorithmic classification of the syzygies and commutation
formulae for differentiated invariants, as first established in [15]. As a byproduct of our
general constgruction, the invariant version of the vertical bicomplex differential will then
produce the desired formula relating invariant variational problems and invariant Euler-
Lagrange equations. The final formula is not elementary; nevertheless, we establish an
explicit computational algorithm based only on infinitesimal data. It is worth empha-
sizing that the required computations only involve linear algebra and differentiation. In
particular, they do not require the explicit formulae for either the moving frame or the dif-
ferential invariants, and hence can be readily automated with symbolic manipulation. (In
contrast, the explicit moving frame normalizations typically require manipulating rational
algebraic functions — the “Achilles heel” of all current computer algebra systems!) Our
own computations have been implemented in both Mathematica and Maple, and the
results compared in order to give added assurance of their overall correctness. Since then,
the first author has implemented a number of the moving frame algorithms in the general
Maple software package Vessiot, [2], developed by Ian Anderson and his students.

2. The Variational Bicomplex.

We begin with a brief review of the variational bicomplex, relying primarily on the
formulation in [1, 3, 35]. See also [29, 39, 40] for basic results on jet bundles, contact
forms, contact transformations, prolongation, etc.

Given a manifold M , we let Jn = Jn(M, p) denote the nth order (extended) jet bundle
consisting of equivalence classes of p-dimensional submanifolds S ⊂ M under the equiv-
alence relation of nth order contact. In particular, J0 = M . The infinite jet bundle
J∞ = J∞(M, p) is defined as the inverse limit of the finite order jet bundles under the

standard projections πn+1
n : Jn+1 → Jn. The individual jet fibers Jn|z = (πn

0 )
−1

{z} are
identified as generalized Grassmann manifolds, [27]. Differential functions, meaning func-
tions F : Jn → R defined on an open subset of jet space, and differential forms on Jn will
be routinely identified with their pull-backs to the appropriate open subset of the infinite
jet space.

4



When we introduce local coordinates z = (x, u) on M , we consider the first p com-
ponents x = (x1, . . . , xp) as independent variables, and the latter q = m − p components
u = (u1, . . . , uq) as dependent variables. The induced local coordinates on the jet bundle
J∞ are denoted by z(∞) = (x, u(∞)), consisting of independent variables xi, dependent
variables uα, and their derivatives uαJ , α = 1, . . . , q, 0 < #J , of arbitrary order. Here
J = (j1, . . . , jk), with 1 ≤ jν ≤ p, is a symmetric multi-index of order k = #J . Coordi-
nates z(n) = (x, u(n)) on the jet bundle Jn are obtained by truncating at order n.

A differential form θ on J∞(M, p) is called a contact form if it is annihilated by all
jets, so that θ | j∞S = 0 for every p-dimensional submanifold S ⊂ M . The subbundle of
the cotangent bundle T∗J∞ spanned by the contact one-forms will be called the contact or
vertical subbundle, denoted by C(∞). In local coordinates (x, u(∞)), every contact one-form
can be written as a linear combination of the basic contact forms

θαJ = duαJ −

p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, 0 ≤ #J. (2.1)

On the other hand, the coordinate one-forms dxi span the horizontal subbundle, denoted
by H, and thereby induce a splitting T∗J∞ = H ⊕C(∞) of the cotangent bundle. Any
one-form ̟ on J∞ can be uniquely decomposed into horizontal and vertical (contact)
components, ̟ = πH(̟) + πV (̟), where πH :T∗J∞ → H and πV :T

∗J∞ → C(∞) are the
induced horizontal and vertical projections.

The splitting of T∗J∞ (which is not true for finite order jet bundles) induces a bi-
grading of the differential forms on J∞, known as the variational bicomplex owing to its
importance in the calculus of variations. The differential d on J∞ naturally splits into
horizontal and vertical components, d = dH + dV , where dH increases horizontal degree
and dV increases vertical degree. Closure, d ◦d = 0, implies that

dH ◦ dH = 0 = dV ◦ dV , dH ◦ dV = − dV ◦ dH .

In particular, the horizontal or total differential of a differential function F : J∞ → R is the
horizontal one-form

dH F =

p∑

i=1

(DiF ) dx
i, where Di =

∂

∂xi
+

q∑

α=1

∑

J

uαJ,i
∂

∂uαJ
(2.2)

denotes the usual total derivative with respect to xi. Similarly, the vertical differential of
a function F (x, u(n)) is the contact one-form

dV F =

q∑

α=1

∑

K

∂F

∂uαK
θαK . (2.3)

A total differential operator is intrinsically defined as a vector field on J∞ which lies
in the annihilator of the contact bundle C(∞). The total derivatives (2.2) form a basis, and
so every total differential operator has the local coordinate form

D =

p∑

i=1

Qi(x, u(n))Di, (2.4)
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where Q1, . . . , Qp are differential functions. The total differential operator (2.4) acts via
Lie differentiation on the basis contact forms:

D(θαJ ) =

p∑

i=1

Qi(x, u(n)) θαJ,i. (2.5)

A horizontal coframe is a collection of p horizontal one-forms

ωi =

p∑

j=1

P i
j (x, u

(n)) dxj, i = 1, . . . , p, (2.6)

that are defined and satisfy the linear independence criterion ω1 ∧ · · · ∧ωp 6= 0 on an open
subset of J∞. The dual total differential operators

Dj =

p∑

i=1

Qi
j(x, u

(n))Di, j = 1, . . . , p, (2.7)

are defined so that

dH F =

p∑

j=1

(DjF )ω
j (2.8)

for any differential function F (x, u(n)), so that
(
Qi

j

)
=
(
P i
j

)−1
is the inverse coefficient

matrix. This identity extends to contact one-forms ϑ (but not to horizontal one-forms!),

dH ϑ =

p∑

j=1

ωj ∧ Djϑ. (2.9)

Full details of the variational bicomplex construction and a wide range of applications can
be found in [1, 29, 35, 39, 40].

3. Moving Frames.

The second main tool in our program is the theory of moving frames as developed in
[15]. Let us briefly review the principal constructions. The basic framework begins with
an r-dimensional Lie group G acting smoothly on the manifold M . We assume, without
significant loss of generality, that G acts locally effectively on subsets , [30], which means
that the global isotropy subgroup G∗U = { g ∈ G | g · z = z for all z ∈ U } of every open
U ⊂M is a discrete subgroup of G. For analytic actions, this is equivalent to assuming G
acts locally effectively on all of M , meaning that G∗M is discrete.

Let G(n) denote the nth prolongation of G to the jet bundle Jn = Jn(M, p) induced by
the action of G on p-dimensional submanifolds. The prolonged group transformations are
uniquely specified by the requirement that they preserve the contact ideal and so define
contact transformations on higher order jet bundles.
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Remark : The methods of this paper can be easily adapted to general contact trans-
formation groups, [29]. However, Bäcklund’s Theorem, cf. [29, 39], shows that only in the
case of hypersurfaces, p = m−1, q = 1, are there (first order) contact transformations that
do not arise as prolongations of point transformations. To avoid yet further complications,
we have chosen to develop the machinery only in the point transformation case.

The regular subset Vn ⊂ Jn is the open subset where G(n) acts locally freely, and so
has prolonged orbits of dimension r = dimG. If the action of G is locally effective on all
open subsets of M , then the stabilization theorem, [30], implies that Vn is nonempty for
n ≫ 0 sufficiently large, and, indeed, dense in Jn. Since the latter result is not explicitly
formulated in the aforementioned reference, we provide a quick proof thereof.

Theorem 3.1. Let G be an r-dimensional Lie group that acts locally effectively on

each open subset of M . Then, for some n ≤ r = dimG, the prolonged action is locally free

on the open and dense subset Vn ⊂ Jn.

Proof : Given an open subset U ⊂ M , let sk = sk(U) denote maximal dimension of
the orbits in Jk(U, p). Clearly, s1 ≤ s2 ≤ . . . ≤ r, and hence the orbit dimensions stabilize
at some order. We let n = n(U) denote the stabilization order , meaning the minimal order
at which sn−1 < sn = sn+1 = sn+2 = · · · . Theorem 5.37 in [29] asserts that there can
exist at most one pseudo-stabilization, that is if sk = sk+1 and sm = sm+1 for k < m
then n ≤ m. Moreover, the stabilization theorem, [30], implies that the prolonged action
becomes locally free on an open subset of some jet space Jm(U, p) of sufficiently high order
m. Putting these two facts together, we conclude that sn(U) = r and that the stabilization
order is uniformly bounded, with n(U) ≤ r − s0(U) + 1 ≤ r, where the maximal orbit
dimension s0(U) ≥ 1 since G acts locally effectively on subsets. Thus, in all cases, there
is an order n ≤ r such that the regular subset Vn ⊂ Jn(M, p) is open, and, moreover, its
projection W = πn

0 (V
n) is dense in M .

For each z ∈M , the intersection Vn
z = Vn ∩ Jn|z consists of the points in the jet fiber

where the prolonged infinitesimal generators are linearly independent. The prolongation
formula, [27, 29], tells us that the prolonged infinitesimal generators depend polynomially
on the derivative coordinates, and hence the fiber complement Jn|z \ Vn

z is an algebraic
subset. Therefore, Vn

z is dense in each fiber unless it is empty. On the other hand Vn
z is

empty if and only if z 6∈W . Since Vn =
⋃

z∈WVn
z , we conclude that Vn is dense. Q.E.D.

Remark : A significant open problem is whether the action is, in fact, free on a (dense)
open subset of Jn for large n, assuming that G acts effectively on subsets. This occurs in all
known examples. However, establishing either a rigorous proof or explicit counterexample
appears to be extremely difficult.

Definition 3.2. An nth order (right-equivariant) moving frame is a map ρ(n): Jn →
G which is (locally) G-equivariant,

ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · g−1, z(n) ∈ Jn, g ∈ G, (3.1)

with respect to the prolonged action G(n) on Jn, and the right multiplication action of G
on itself.
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Remark : The corresponding left-equivariant moving frame is merely ρ̃ (n)(z(n)) =
ρ(n)(z(n))−1. Most classical geometrical moving frames are left-equivariant, but the right
versions are often easier to compute and the group inversion map provides an easy mech-
anism for changing one to the other. To be concrete, we shall consistently use right-
equivariant moving frames in this paper.

The fundamental existence theorem for moving frames follows, cf. [15].

Theorem 3.3. If G acts on M , then an nth order moving frame exists in a neigh-

borhood of z(n) ∈ Jn if and only if z(n) ∈ Vn is a regular jet.

See [30] for a complete characterization of totally singular submanifolds , meaning
those whose jets are singular to all orders, jnS ⊂ Jn\Vn, and hence admit no moving frame.
Every nth order moving frame automatically defines a moving frame ρ(n) ◦πk

n: J
k → G,

k ≥ n, on the higher order jet bundles by composition with the usual jet bundle projections
πk
n: J

k → Jn. We will adopt a uniform notation ρ : J∞ → G for the induced moving frame
on a suitable open subset of the infinite jet bundle.

The practical construction of a moving frame is based on Cartan’s method of normal-

ization, [8, 15], which requires the choice of a (local) cross-section Kn ⊂ Vn to the group
orbits. For expository purposes, we shall assume Kn is a global cross-section, which may
require shrinking the domain Vn ⊂ Jn of regular jets.

Theorem 3.4. Let G act freely, regularly on Vn ⊂ Jn. Let Kn ⊂ Vn be a cross-

section to the group orbits. Given z(n) ∈ Vn, let g = ρ(n)(z(n)) be the unique group

element that maps z(n) to the cross-section: g(n) · z(n) = ρ(n)(z(n)) · z(n) ∈ Kn. Then

ρ(n) : Jn → G is a right moving frame for the group action.

One typically chooses a coordinate cross-section Kn = { z1 = c1, . . . , zr = cr } ob-
tained by setting r = dimG of the components of z(n) = (x, u(n)) — either indepen-
dent variables, dependent variables, or their derivatives — to equal constants. We use
w(n)(g, z(n)) = g(n) · z(n) to denote the explicit local coordinate formulae for the pro-
longed group transformations. Using the same labeling w1, . . . , wr for the transformed
cross-section components, the moving frame in Theorem 3.4 is obtained by solving the
normalization equations

w1(g, z) = c1, . . . wr(g, z) = cr, (3.2)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z(n). For simplicity,
we shall always assume that we are using a coordinate cross-section to prescribe our moving
frame. Non-coordinate cross-sections can also be handled, albeit with some additional
complications, by a straightforward adaptation of our basic methods.

Theorem 3.5. If g = ρ(n)(z(n)) is the moving frame solution to the normalization

equations (3.2), then the components of

I(n)(z(n)) = w(n)(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n) (3.3)

form a complete system of differential invariants on the open subset of Jn where the moving

frame is defined.
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The components I1 = c1, . . . , Ir = cr corresponding to the cross-section coordinates
z1, . . . , zr are trivial, constant differential invariants, and are known as the phantom differ-

ential invariants , [15]. The remaining dimJn − r differential invariants form a complete
system of functionally independent nth order differential invariants for the transformation
group G, and are known as the normalized differential invariants . Thus, any other nth or-
der differential invariant can, locally, be written uniquely as a function of the fundamental,
non-phantom differential invariants of order ≤ n.

Example 3.6. We shall use the planar action (1.1) of the Euclidean group SE(2)
on plane curves C ⊂ M = R

2 as a running illustrative example. The prolonged group
transformations

y = x cosφ− u sinφ+ a, v = x sinφ+ u cosφ+ b,

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx
(cosφ− ux sinφ)

3
,

(3.4)

etc., are constructed by successively applying implicit differentiation operator

Dy =
1

cosφ− ux sinφ
Dx (3.5)

to v. The classical Euclidean moving frame, [19], follows from the cross-section normal-
izations

y = 0, v = 0, vy = 0. (3.6)

Solving for the group parameters g = (φ, a, b) leads to the right-equivariant† moving frame

φ = − tan−1 ux , a = −
x+ uux√
1 + u2x

, b =
xux − u√
1 + u2x

. (3.7)

The corresponding left moving frame is obtained by inversion, (φ̃, ã, b̃) = (φ, a, b)−1 =
(tan−1 ux, x, u). Its translation component ã = x, b̃ = u is the point on the curve, while

the columns of the rotation matrix with angle φ̃ = tan−1 ux consist of the unit tangent
and normal vectors, and thereby recovers the classical Frenet frame, [19].

The fundamental normalized differential invariants for the moving frame (3.7) are

y 7−→ H = 0, v 7−→ I0 = 0, vy 7−→ I1 = 0,

vyy 7−→ I2 = κ =
uxx

(1 + u2x)
3/2

, vyyy 7−→ I3 = κs, vyyyy 7−→ I4 = κss + 3κ3,
(3.8)

and so on. In particular, H, I0, I1 are the phantom invariants, while I2 = κ is the Euclidean
curvature, which forms the basic differential invariant for Euclidean plane curves. Further,
D = Ds = (1 + u2x)

−1/2Dx is the arc length derivative, which maps differential invariants
to higher order differential invariants, and can itself be constructed by applying the moving

† Actually, this moving frame is only locally equivariant, since there remains an ambiguity
of π in the prescription of the rotation angle. For simplicity, we shall ignore this technical point
here, referring to [31] for a detailed discussion.
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frame normalization (3.7) to the implicit differentiation (3.5); see below for details. Later
we will see how to explicitly relate the normalized differential invariants In to the arc
length derivatives κm = Dmκ of the curvature.

4. The Invariant Bicomplex.

We now build group invariance into the variational bicomplex through our chosen
moving frame. The construction of the appropriate “invariantized” bicomplex is aided by
the regularization procedure introduced in [15]. Given any Lie group action of G on a
manifoldM , consider lifted action g ·(h, z) = (h·g−1, g ·z) of G on the trivial right principal
bundle π:B = G ×M → M . No matter how complicated the original action, the lifted
action is always regular and free. Moreover, a complete set of functionally independent
lifted invariants on B is provided by the components of the evaluation map w:B → M ,
defined by w(g, z) = g · z.

The regularization construction is immediately adapted to the prolonged action of
G(n) on the jet bundle Jn. In the infinite jet limit, we introduce the regularized jet bundle

π:B∞ = G× J∞ → J∞ with lifted prolonged group action

g · (h, z(∞)) = (h · g−1, g(∞) · z(∞)), g ∈ G, (h, z(∞)) ∈ B∞. (4.1)

The components of the evaluation map w = w(∞):B∞ → J∞, given by

w(g, z(∞)) = g(∞) · z(∞), (4.2)

provide a complete system of lifted differential invariants on B∞. This endows the lifted
jet space with a double fibration or groupoid, [25, 33], structure

B∞

�
�

✠
π ❅

❅❘
w

J∞ J∞.

(4.3)

A moving frame, when prolonged to the infinite jet bundle ρ: J∞ → G, serves to define
a G-equivariant section σ: J∞ → B∞, namely σ(z(∞)) = (ρ(z(∞)), z(∞)). Now, π ◦σ = 11J∞

is the identity, whereas the components of the composition I = w ◦σ: J∞ → J∞ serve to
define the fundamental normalized differential invariants (3.3), namely

I(z(∞)) = w(ρ(z(∞)), z(∞)) = ρ(z(∞)) · z(∞). (4.4)

If F : J∞ → R is any differential function, we let F̂ (g, z(∞)) = w∗F = F ◦w denote its

lift , which defines an invariant function on B∞, and ι(F ) = σ∗F̂ = I∗F = F ◦ I its
invariantization. Geometrically, ι(F ) is the unique differential invariant that agrees with
F on the cross-section. In particular, ι(I) = I for any differential invariant I, and hence
invariantization defines a canonical projection (depending upon the moving frame) from
the space of differential functions to the space of differential invariants.

In local coordinates z(∞) = (x, u(∞)) = (. . . xi . . . uαJ . . .), the normalized differential
invariants (4.4) associated with the moving frame are given by invariantizing the coordinate
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functions, and denoted by

Hi(x, u(n)) = σ∗(yi) = ι(xi), i = 1, . . . , p,

IαK(x, u(l)) = σ∗(vαK) = ι(uαK), α = 1, . . . , q, k = #K ≥ 0.
(4.5)

In general, the invariantization process is given by

ι
(
F ( . . . , xi, . . . , uαJ , . . . )

)
= F ( . . . , Hi, . . . , IαJ , . . . ). (4.6)

Let Ω̂∗ denote the space of differential forms on B∞, which we call lifted differential

forms . A coframe or basis for Ω̂∗ consists of the pulled-back† horizontal forms dx1, . . . , dxp,
the contact one-forms θαK , α = 1, . . . , q,#K ≥ 0, and the Maurer–Cartan forms µ1, . . . , µr

on G. The Cartesian product structure on B∞ = J∞ × G induces a bigrading on Ω̂∗ =
⊕

k,l Ω̂
k,l, where Ω̂k,l denotes the space of forms with k jet components — either dxi or

θαK — and l Maurer–Cartan forms µℓ. We accordingly decompose the differential

d = dJ + dG

on B∞ into jet and group components, so

dJ : Ω̂k,l −→ Ω̂k+1,l, dG : Ω̂k,l −→ Ω̂k,l+1.

This decomposition induces a trivial product bicomplex structure on B∞:

d2J = 0, dG dJ + dJ dG = 0, d2G = 0. (4.7)

Using the bundle structure on J∞ induced by a choice of local coordinates, we may further
decompose dJ = dH + dV into horizontal and vertical (contact) components. The latter

induces the structure of the lifted tricomplex on Ω̂∗, with

d2H = d2V = d2G = 0, dV dH + dH dV = dG dH + dH dG = dG dV + dV dG = 0.
(4.8)

Let Ω̂∗
J =

⊕

k Ω̂
k,0 denote the space of pure jet forms on B∞. A jet form may depend

on group parameters, but contains no Maurer–Cartan forms. Let πJ : Ω̂
∗ → Ω̂∗

J denote the
jet projection, which annihilates all the Maurer–Cartan forms. Note that

πJ ◦d = dJ = dJ ◦πJ , πJ ◦ dG = 0, but dG ◦πJ 6= 0. (4.9)

If Ω is any differential form on J∞, we call Ω̂ = πJw
∗Ω the corresponding lifted jet

form on B∞. In view of (4.2), we can identify Ω̂ with the pull-back of the form Ω under
the prolonged group transformations:

Ω̂
∣∣
(z(∞),g)

= πJw
∗(Ω

∣∣
z(∞)

)
= g∗

(
Ω
∣∣
g·z(∞)

)
, (4.10)

† To keep the notation simple, we shall always identify a form on either J∞ or G and its
pull-back to B

∞ = G× J∞ under the standard Cartesian projections.
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which we formally write as Ω̂ = g∗Ω. Since the group acts on B∞ via the product action,
both w∗Ω and its projection Ω̂ = πJw

∗Ω are G–invariant forms; thus

g∗Ω̂ = Ω̂ for any g ∈ G. (4.11)

In terms of local coordinates, we introduce the lifted horizontal forms

dJ y
i = πJ(dy

i) = πJw
∗(dxi), i = 1, . . . , p, (4.12)

and the lifted contact forms

Θα
K= πJw

∗(θαK) = πJ

(
dvαK −

p∑

i=1

vαKi dy
i

)

= dJ v
α
K −

p∑

i=1

vαKi dJ y
i = dV v

α
K −

p∑

i=1

vαKi dV y
i.

(4.13)

When combined with the Maurer–Cartan forms µ1, . . . , µr, the forms (4.12), (4.13) con-
stitute a complete coframe on B∞.

Warning : If the group action is non-projectable, the differential does not decompose
properly with respect to the induced trigrading of the space of differential forms, and so
this decomposition does not define a tricomplex. See below for additional details.

We now use the moving frame section σ : J∞ → B∞ to pull back the lifted jet forms
to produce invariant differential forms on J∞. The most important definition in this paper
tells us how to invariantize an arbitrary differential form.

Definition 4.1. The invariantization of a differential form Ω on J∞ is the invariant
differential form

ι(Ω) = σ∗
(
πJ (w

∗Ω)
)
. (4.14)

In other words, we lift Ω to B∞, then, formally, set the Maurer–Cartan forms equal
to zero, and finally pull-back via our moving frame. In particular, on functions the invari-
antization map ι = (w ◦σ)∗ = I∗ is just pull-back by the fundamental invariants as above,
(4.6). However, ι does not agree with pull-back on differential forms! The reason for this
choice of invariantization operator is encapsulated in the following key result.

Lemma 4.2. The invariantization map ι defines a projection, ι2 = ι, from the space

of differential forms on J∞ onto the space of invariant differential forms on J∞.

Proof : The fact that ι(Ω) is G-invariant follows from the equivariance of the moving
frame section σ coupled with (4.11). To prove that invariantization defines a projection,
it suffices to show that if Ω = g∗Ω is any G-invariant form, then

ι(Ω) = σ∗(πJ(w
∗ Ω)) = Ω,
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but this follows immediately from (4.10), which implies that†

πJw
∗Ω = g∗Ω = Ω

whenever Ω is G-invariant. Applying σ∗ to this identity proves the lemma. Q.E.D.

Example 4.3. To see the importance of the jet projection πJ for the validity of this
result, consider the elementary two-parameter translation group G ≃ R

2, acting on curves
in the plane M = R

2 via
y = x+ a, v = u+ b.

The group has trivial prolonged action, and so a complete set of differential invariants
consists of the derivatives uk = Dk

xu, k = 1, 2, . . . . A (right) moving frame ρ:M → G is
obtained by normalizing y = v = 0, so that a = −x, b = −u, and so the moving frame
section is given by

σ(x, u, ux, . . . ) = (−x,−u; x, u, ux, . . . ) ∈ G× J∞.

The differential form dx is invariant, but

w∗ (dx) = dx+ da, so σ∗(w∗ (dx)) = 0,

whereas

πJ (w
∗ (dx)) = dx, so ι(dx) = σ∗(w∗ (πJ(dx))) = dx.

Note that, were we not to include the jet projection in our definition (4.14), the invari-
antization map would not preserve invariant differential forms, and would fail to produce
a complete invariant coframe.

Invariantizing the variational bicomplex on J∞ leads to the invariant complex . (We
refrain from using the word “invariant bicomplex” for reasons that will become apparent.)
In terms of local coordinates z(∞) = (x, u(∞)), the invariant horizontal one-forms are

̟i = σ∗( dJ y
i) = ι(dxi). (4.15)

The adjective “invariant horizontal” is not meant to imply that these are purely horizontal
forms. If we decompose them into horizontal and contact components

̟i = ωi + ηi where ωi = σ∗( dH yi), ηi = σ∗( dV y
i), (4.16)

their horizontal components ωi = πH(̟i) = σ∗( dH yi) ∈ Ω1,0 are the usual contact-
invariant horizontal forms, [15]. If the group acts non-projectably, the forms ̟i include
an additional contact “correction” ηi ∈ Ω0,1 that makes them fully invariant one-forms.
The fundamental invariant contact forms are

ϑαJ = σ∗(Θα
J ) = ι(θαJ ). (4.17)

These are, in all cases, genuine contact forms, and do form a basis for the full contact ideal.
The invariantization map ι is an exterior algebra morphism, and so can be reconstructed
from its action (4.5), (4.15), (4.17) on the fundamental coordinates and one-forms

† More correctly, we should write π∗Ω at the end of this equation since the result lives on
B
∞, not J∞.
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Example 4.4. Consider again the planar Euclidean group SE(2) introduced in Ex-
ample 3.6. To obtain the invariant differential forms, we begin with the lifted horizontal
form

dJ y = (cosφ) dx− (sinφ) du = (cosφ− ux sinφ) dx− (sinφ) θ,

where θ = du− ux dx is the usual contact form. Pulling back via the moving frame (3.7)
leads to the invariant horizontal one-form

̟ = ω + η =
√

1 + u2x dx+
ux√
1 + u2x

θ, (4.18)

which is a sum of the contact-invariant arc length form ω = ds =
√

1 + u2x dx along with

a contact correction η = ux (1 + u2x)
−1/2 θ required to make ̟ fully Euclidean-invariant.

Similarly, the invariant contact forms

Θk = dJ vk − vk+1 dJ y = dV vk − vk+1 dV y = πJ (w
∗ (θk))

are obtained by pulling back the lifted contact forms via the moving frame. In particular,

Θ = dV v − vy dV y = (cosφ− vy sinφ) θ =
θ

cosφ− ux sinφ
,

Θy = dV vy − vyy dV y =
θx

(cosφ− ux sinφ)
2
+

(uxx sinφ) θ

(cosφ− ux sinφ)
3
,

and so on. Substituting the moving frame formula φ = − tan−1 ux produces the normalized
invariant contact forms ϑk = σ∗(Θk) = ι(θk), with

ϑ =
θ√

1 + u2x
, ϑ1 =

(1 + u2x) θx − uxuxxθ

(1 + u2x)
2

,

ϑ2 =
(1 + u2x)

2 θxx − 3uxuxx(1 + u2x) θx + (3u2xu
2
xx − ux(1 + u2x)uxxx) θ

(1 + u2x)
7/2

,

(4.19)

and so on.

Returning to the general picture, we note the following important fact, proved in [15].

Theorem 4.5. The invariant horizontal and contact one-forms (4.15), (4.17) form

an invariant coframe on the domain of definition V∞ ⊂ J∞ of the moving frame.

In particular, the invariant contact forms ϑαK span the usual contact ideal. On the
other hand, for non-projectable actions, the p-dimensional subbundle H ⊂ T∗J∞ spanned
by the invariant horizontal forms is not the same as the horizontal subbundle H spanned by
the dxi. One can interpret the invariant horizontal subbundle H as defining an alternative,
invariant connection on the infinite jet bundle, cf. [3].

We can uniquely decompose any one-form into a linear combination of the invariant
horizontal one-forms ̟1, . . . , ̟p and the invariant contact forms. We will call these two
components the invariant horizontal and invariant vertical components of the form. In
this manner, the invariant coframe (4.15), (4.17) is used to bigrade the space of differential
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forms on J∞. We let Ω̃r,s denote the space of forms of invariant bigrade (r, s), which are
linear combinations of wedge products of r invariant horizontal forms ̟i and s invariant
contact forms ϑαK , and let π̃r,s: Ω̃ → Ω̃r,s be the associated projection. The coefficients in
the linear combination are differential functions, and the form is invariant if and only if its
coefficients are differential invariants.

Invariantization defines a map

ι :Ωr,s −→ Ω̃r,s (4.20)

that takes an ordinary form of bigrade (r, s) and produces an invariant form of invariant

bigrade (r, s). If G acts projectably, then the two bigradings are the same, Ω̃r,s = Ωr,s,
although this does not imply that the invariantization map (4.20) is trivial! If G acts non-
projectably, the invariant bigradation is different from the standard bicomplex bigradation.
However, formula (4.16) says that the horizontal and invariant horizontal forms differ only
by contact forms and hence the projections,

πr,s: Ω̃
r,s −→ Ωr,s, π̃r,s:Ω

r,s −→ Ω̃r,s, (4.21)

are mutual inverses.

5. Recurrence Formulae.

The most important fact underlying the general construction is that the invariantiza-
tion map (4.20) does not respect the exterior derivative operator. Thus, in general,

d ι(Ω) 6= ι(dΩ).

This fact is responsible for all of the complications inherent in the study of differential
invariants, invariant forms, invariant variational problems, invariant differential equations,
and all other quantities associated with the invariant complex. The reason is because ι is
not a pull-back, owing to the intervening jet projection πJ . For example, if ι(xi) = Hi = c is
a phantom invariant, then ι(dxi) = ̟i 6= dι(xi) = 0. The recurrence formulae, first derived
in [15] in the particular case of differential invariants, provide the missing “correction
terms”, namely the difference dι(Ω)− ι(dΩ).

Remarkably, the required formulae can be algorithmically and explicitly constructed
using only infinitesimal information! Let v1, . . . ,vr ∈ g be a basis for the infinitesimal
generators of our transformation group. (By local effectiveness, we can unambiguously
identify Lie algebra elements and their corresponding vector fields on M .) We prolong
each infinitesimal generator to J∞, and, for brevity, adopt the same notation vℓ for the
prolonged vector field. We use vℓ(Ω) to denote the Lie derivative of the differential form
Ω on J∞ with respect to the prolonged infinitesimal generator vℓ.

In local coordinates, the infinitesimal generators take the form

vℓ =

p∑

i=1

ξiℓ(x, u)
∂

∂xi
+

q∑

α=1

∑

j=#J≥0

ϕα
J,ℓ(x, u

(j))
∂

∂uαJ
, ℓ = 1, . . . , r. (5.1)
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The higher order coefficients ϕα
J,ℓ are recursively constructed from the zeroth order ones,

ξiℓ, ϕ
α
ℓ , by the well-known prolongation formula

ϕα
Ji,ℓ = Diϕ

α
J,ℓ −

p∑

j=1

uαJj Diξ
j
ℓ . (5.2)

A proof can be found in (5.31) below; see also [27, 29] for the explicit, non-recursive
version of this basic formula.

Let µ1, . . . , µr denote the Maurer–Cartan forms dual to the infinitesimal generators
(5.1). A key ingredient in our analysis is a generalization of a formula in [15; (3.8)], that
exploits the duality between infinitesimal generators and Maurer–Cartan forms.

Lemma 5.1. If Ω̂ = πJw
∗Ω is a lifted jet form on B∞, then

dG Ω̂ =

r∑

ℓ=1

µℓ ∧ πJw
∗[vℓ(Ω)]. (5.3)

Remark : It is important to apply the jet projection πJ to w∗Ω first, before comput-
ing dG . Dependence on the Maurer–Cartan forms would introduce additional terms in
formula (5.3) arising from the Maurer–Cartan structure equations of G.

The proof of Lemma 5.1 straightforwardly follows from the identification (4.10) of w∗

with the pull-back by a group element, along with the fact that, by duality, the coefficient
of µℓ in dG Ω̂ = dG (g∗Ω) is obtained by Lie differentiation with respect to its dual
infinitesimal generator vℓ. Details are left to the reader.

The correction terms in the recurrence formulae arise from the moving frame pull-
backs νℓ = σ∗µℓ of the Maurer–Cartan forms. We invariantly decompose them as

σ∗µℓ = νℓ = γℓ + εℓ, where γℓ =

p∑

i=1

Cℓ
i ̟

i ∈ Ω̃1,0, εℓ =
∑

α,J

Eℓ,J
α ϑαJ ∈ Ω̃0,1,

(5.4)
are, respectively, invariant horizontal and invariant contact forms, and the coefficients
Cℓ

i , E
ℓ,J
α are certain differential invariants. We let

λℓ = αℓ + βℓ, where αℓ =

p∑

i=1

Aℓ
i dx

i ∈ Ω1,0, βℓ =
∑

α,J

Bℓ,J
α θαJ ∈ Ω0,1, (5.5)

be one-forms on J∞ whose invariantization agrees with the preceding forms:

νℓ = ι(λℓ), γℓ = ι(αℓ), εℓ = ι(βℓ), Cℓ
i = ι(Aℓ

i), Eℓ,J
α = ι(Bℓ,J

α ). (5.6)

The one-forms λℓ, αℓ, βℓ are not uniquely determined. Since invariantization is a projec-
tion, one could, in fact, choose λℓ = νℓ — which, however, does not mean that αℓ = γℓ,
βℓ = εℓ, since these one-forms typically belong to different bigradations of J∞. Usually,
however, there are much simpler choices of αℓ, βℓ, and hence λℓ, available.

We now state the key result that produces all the recurrence formulae for the invariant
derivatives of functions and differential forms.
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Lemma 5.2. If Ω is any differential form on J∞, then

d ι(Ω) = ι(dΩ) +
r∑

ℓ=1

νℓ ∧ ι[vℓ(Ω)] = ι

(
dΩ+

r∑

ℓ=1

λℓ ∧ vℓ(Ω)

)
. (5.7)

Proof : This is a straightforward computation based on (4.9), (5.3)

d ι(Ω) = d σ∗πJw
∗Ω = σ∗(d πJw

∗Ω) = σ∗( dJ + dG )πJw
∗Ω

= σ∗
(
πJ dw

∗Ω+ dG πJw
∗Ω
)
= σ∗

(
πJw

∗(dΩ) +
r∑

ℓ=1

µℓ ∧ πJw
∗[vℓ(Ω)]

)

= σ∗πJw
∗(dΩ) +

r∑

ℓ=1

νℓ ∧ σ∗πJw
∗[vℓ(Ω)] = ι(dΩ) +

r∑

ℓ=1

νℓ ∧ ι[vℓ(Ω)].

The definition (5.6) of λℓ completes the proof. Q.E.D.

We now decompose (5.7) into invariant horizontal and vertical components. An im-
portant observation is that the Lie derivative operation does not — unless the vector field
is projectable — preserve the bigrading of our complex. While vℓ certainly maps contact
forms to contact forms, we find that

vℓ( dH xi) = vℓ(dx
i) = dξiℓ = dH ξiℓ + dV ξ

i
ℓ (5.8)

is a combination of horizontal and zeroth order† contact forms, since ξiℓ(x, u) only depends
on the base coordinates. Therefore,

if Ω ∈ Ωr,s, then vℓ(Ω) ∈ Ωr,s
⊕Ωr−1,s+1 while dΩ ∈ Ωr+1,s

⊕Ωr,s+1. (5.9)

Now, consider an invariant form Ω̃ = ι(Ω) ∈ Ω̃r,s obtained by invariantization of a
differential form Ω ∈ Ωr,s. Using (5.4), (5.7), (5.9), we see that

d Ω̃ ∈ Ω̃r+1,s
⊕Ω̃r,s+1

⊕Ω̃r−1,s+2. (5.10)

In fact, this decomposition holds even if Ω̃ ∈ Ω̃r,s is not actually invariant, since we can
still write it as a linear combination of differential functions multiplying wedge products of
the invariant one-forms. Equation (5.10) allows us to invariantly decompose the differential
into three constituents:

d = dH + dV + dW , (5.11)

so that

† One minor complication in the generalization of these constructions to contact transforma-

tion groups is that ξiℓ(x, u
(1)) can also depend on first order derivatives, and so (5.8) will contain

first order contact forms.
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dH ι(Ω) = ι

(
dH Ω+

r∑

ℓ=1

αℓ ∧ πr,s[vℓ(Ω)]

)
∈ Ω̃r+1,s,

dV ι(Ω) = ι

(
dV Ω +

r∑

ℓ=1

{
βℓ ∧ πr,s[vℓ(Ω)] + αℓ ∧ πr−1,s+1[vℓ(Ω)]

})
∈ Ω̃r,s+1,

dW ι(Ω) = ι

(
r∑

ℓ=1

βℓ ∧ πr−1,s+1[vℓ(Ω)]

)
∈ Ω̃r−1,s+2. (5.12)

The final formula requires r ≥ 1; otherwise, dW ι(Ω) = 0 for any pure contact form (or

differential function) Ω ∈ Ω̃0,s. In fact, the last term in the second formula is also zero
in this situation. These three fundamental identities can be used to deduce all the basic
recurrence formulae!

The appearance of the extra differential dW makes life more complicated, and prevents
us from using a lot of the standard bicomplex machinery. Breaking the equation d2 = 0
into its various terms in the invariant bigrading leads to the basic formulae

d2H = 0, dH dV + dV dH = 0,

d2W = 0, dV dW + dW dV = 0,
d2V + dH dW + dW dH = 0. (5.13)

We will call such a structure a quasi-tricomplex .

Remark : If G acts projectably, then the formulae simplify. Indeed, the Lie derivative
vℓ(Ω) ∈ Ωr,s whenever Ω ∈ Ωr,s. Therefore, dW = 0, and (5.13) reduce to the usual
bicomplex relations for dH , dV . Thus, for projectable group actions, the terminology
“invariant variational bicomplex” is accurate.

An important observation is that, in all cases, the edge complex, [1, 35], of the invari-
ant quasi-tricomplex is a genuine complex. Closure along the horizontal edge, consisting of
invariant forms of type (r, 0) for 0 ≤ r ≤ p, is immediate from the first equation in (5.13),

while closure along the vertical edge, consisting of equivalence classes Ω̃p,s/ dH Ω̃p−1,s of
invariant forms of type (p, s) for s ≥ 0, follows from the last equation and the fact that if a

form Ω ∈ Ω̃p,s is of maximal horizontal degree, then dH Ω = 0, and hence d2V ≡ 0 modulo

im dH . In particular, an invariant variational source form Ω ≡ dV λ ∈ Ω̃p,1/ dH Ω̃p−1,1

satisfies the invariant Helmholtz conditions dV Ω ≡ 0. This edge complex is known as
the invariant variational complex . Anderson and Pohjanpelto, [5], showed that, for pro-
jectable actions, the cohomology of the invariant variational complex can be identified with
the Lie algebra cohomology of the transformation group; their results were extended to
nonprojectable actions by Itskov, [21].

Let us investigate how these formulae look in local coordinates. First, if F (x, u(n)) ∈
Ω0,0 is any differential function, then

dH F =

p∑

i=1

DiF ·̟i, dV F =
∑

α,J

QJ
αF · ϑαJ , dW F = 0. (5.14)
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Here D1, . . . ,Dp are the usual invariant differential operators dual to the contact-invariant

coframe, cf. (2.7), while the QJ
α are their vertical counterparts. Both map differential in-

variants to differential invariants. A complete system of higher order differential invariants
can be obtained by recursively applying the Di to differentiate the lower order differential
invariants — specifically those of order ≤ n+ 1 where n is the order of the moving frame.
See [15] for details.

Suppose I = ι(F ) is any differential invariant which is obtained by invariantizing a
differential function F . The horizontal identity in (5.12) coupled with (5.5) gives

dH I = dH ι(F ) = ι

(
dH F +

r∑

ℓ=1

vℓ(F )α
ℓ

)
=

p∑

i=1

ι(DiF )̟
i, (5.15)

where

Di = Di +

r∑

ℓ=1

Aℓ
i vℓ (5.16)

is a certain group-induced modification of the total derivative. Therefore, the coefficient
of ̟i gives the basic recurrence formulae

Diι(F ) = ι(DiF ), i = 1, . . . , p, (5.17)

expressing the differentiated invariants in terms of the normalized invariants. We can then
use equation (5.17) to determine the correction terms for the higher order derivatives of
any differential invariant:

DKι(F ) = ι(DKF ), where DK = Dk1
· · ·Dkm

, DK = Dk1
· · ·Dkm

. (5.18)

Warning : Like the invariant differential operators D1, . . . ,Dp, the differential opera-
tors D1, . . . ,Dp do not necessarily commute.

Choosing F to be one of the coordinate functions xi, uαJ , we obtain the recurrence
formulae for the fundamental differential invariants (4.5), namely

dHHi = ι

(
dxi +

r∑

ℓ=1

ξiℓ α
ℓ

)
= ̟i +

r∑

ℓ=1

Ξi
ℓγ

ℓ,

dH IαJ = ι

(
dH uαJ +

r∑

ℓ=1

ϕα
J,ℓ α

ℓ

)
=

p∑

i=1

IαJi̟
i +

r∑

ℓ=1

Φα
J,ℓ γ

ℓ,

(5.19)

where
Ξi
ℓ = ι(ξiℓ), Φα

J,ℓ = ι(ϕα
J,ℓ), (5.20)

denote the invariantizations of the prolonged infinitesimal generator coefficients (5.1), while
the γℓ are the invariant horizontal components of the pulled-back Maurer–Cartan forms
(5.4). Therefore,

Dix
j = δji +

r∑

ℓ=1

Aℓ
iξ

j
ℓ , Diu

α
J = uαJi +

r∑

ℓ=1

Aℓ
iϕ

α
J,ℓ,

19



and so the identities (5.17) produce the known recurrence formulae, [15; (13.7)],

DiH
j = δji +

r∑

ℓ=1

Cℓ
i Ξ

j
ℓ , DiI

α
J = IαJi +

r∑

ℓ=1

Cℓ
i Φ

α
J,ℓ. (5.21)

In particular, applying the identities (5.19) to the r = dimG phantom invariants, we
obtain a system of r linear equations that can be used to uniquely determine the one-forms
γ1, . . . , γr as linear combinations of the invariant horizontal forms ̟1, . . . , ̟p, and hence,
(5.4), can be used to explicitly determine the differential invariant coefficients Cℓ

i = ι(Aℓ
i).

Similarly, the invariant vertical component in (5.12) yields the identity

dV I = dV ι(F ) = ι

(
dV F +

r∑

ℓ=1

vℓ(F ) β
ℓ

)
=
∑

α,J

ι(EJ
αF )ϑ

α
J , (5.22)

where

E
J
α =

∂

∂uαJ
+

r∑

ℓ=1

Bℓ,J
α vℓ (5.23)

are certain group-induced modification of the vertical differentiation operators. Therefore,
the invariant vertical derivatives of a differential function are given by

QJ
α

[
ι(F )

]
= ι(EJ

αF ), α = 1, . . . , q, #J ≥ 0. (5.24)

In particular, for the fundamental differential invariants,

dV H
i = ι

(
r∑

ℓ=1

ξiℓ β
ℓ

)
=

r∑

ℓ=1

Ξi
ℓ ε

ℓ,

dV I
α
K = ι

(
θαK +

r∑

ℓ=1

ϕα
K,ℓ β

ℓ

)
= ϑαK +

r∑

ℓ=1

Φα
K,ℓ ε

ℓ.

(5.25)

Furthermore,

E
J
α(x

j) =
r∑

ℓ=1

Bℓ,J
α ξjℓ , E

J
α(u

β
K) = δβαδ

J
K +

r∑

ℓ=1

Bℓ,J
α ϕα

J,ℓ,

and so the identities (5.24) yield the explicit formulae

QJ
α(H

j) =
r∑

ℓ=1

Eℓ,J
α Ξj

ℓ , QJ
α(I

β
K) = δβα δ

J
K +

r∑

ℓ=1

Eℓ,J
α Φα

J,ℓ, (5.26)

for the action of the invariant vertical differentiation operators. As above, the identities
(5.25) for the r phantom invariants produce a system of r linear equations that can be used
to uniquely determine the one-forms ε1, . . . , εr as linear combinations of invariant contact
forms, and hence, as in (5.4), can be used to explicitly determine the required differential
invariant coefficients Eℓ,J

α = ι(Bℓ,J
α ).
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Next we establish the recurrence formulae for the derivatives of the invariant horizontal
forms. Since ̟i = ι( dxi), equation (5.12) implies

dH̟
i = ι

(
r∑

ℓ=1

αℓ ∧ dH ξiℓ

)
=

r∑

ℓ=1

γℓ ∧ ι( dH ξiℓ) =

r∑

ℓ=1

p∑

k=1

ι
(
Dkξ

i
ℓ

)
γℓ ∧̟k,

dV ̟
i = ι

(
r∑

ℓ=1

[
αℓ ∧ dV ξ

i
ℓ + βℓ ∧ dH ξiℓ

]
)

=

r∑

ℓ=1

[
γℓ ∧ ι( dV ξ

i
ℓ) + εℓ ∧ ι( dH ξiℓ)

]

=

r∑

ℓ=1

[
q∑

α=1

ι

(
∂ξiℓ
∂uα

)
γℓ ∧ ϑα +

p∑

k=1

ι(Dkξ
i
ℓ) ε

ℓ ∧̟k

]
, (5.27)

dW ̟i = ι

(
r∑

ℓ=1

βℓ ∧ dV ξ
i
ℓ

)
=

r∑

ℓ=1

εℓ ∧ ι( dV ξ
i
ℓ) =

r∑

ℓ=1

q∑

α=1

ι

(
∂ξiℓ
∂uα

)
εℓ ∧ ϑα.

We remark that the explicit formulae for the one-forms γℓ, εℓ have already been determined
through the use of the phantom differential invariants, cf. (5.19), (5.25). In particular,
combining the first identity in (5.27) with (5.4), (5.6) produces

dH̟i =
∑

j<k

Y i
jk̟

j ∧̟k, where Y i
jk =

r∑

ℓ=1

ι
(
Aℓ

j Dkξ
i
ℓ −Aℓ

kDjξ
i
ℓ

)
. (5.28)

The (2, 0) component of this identity, namely dH ωi =
∑

j<k Y i
jk ω

j ∧ ωk, produces the
explicit commutation formulae

[Dj,Dk ] = −

p∑

i=1

Y i
jk Di =

p∑

i=1

Y i
kj Di (5.29)

for the invariant differential operators, first found in [15; eqs. (9.11), (13.12)].

Finally, we establish the recurrence formulae for the derivatives of the invariant contact
forms. Consider the Lie derivative

ψα
J,ℓ ≡ vℓ(θ

α
J ) = vℓ

(
duαJ −

p∑

i=1

uαJi dx
i

)
= dϕα

J,ℓ −

p∑

i=1

[
ϕα
Ji,ℓ dx

i + uαJi dξ
i
ℓ

]
(5.30)

of a basis contact form with respect to an infinitesimal generator of the group action. Since
the result must be a contact form, the horizontal terms in (5.30) vanish, so

p∑

i=1

ϕα
Ji,ℓ dx

i = dH ϕα
J,ℓ −

p∑

j=1

uαJj dH ξjℓ , (5.31)

which, incidentally, proves the recursive prolongation formula (5.2). The remaining terms
in (5.30) yield the formula

ψα
J,ℓ = dV ϕ

α
J,ℓ −

p∑

i=1

uαJi dV ξ
i
ℓ. (5.32)
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In analogy with (5.2), the contact one-forms ψα
J,ℓ can be regarded as the “vertical prolon-

gation coefficients” of the infinitesimal generator vℓ. Applying the first identity in (5.12)
to the basis invariant contact form ϑαJ = ι(θαJ ), we find

dH ϑαJ = ι( dH θαJ ) +
r∑

ℓ=1

γℓ ∧ ι(vℓ(θ
α
J )) =

p∑

i=1

̟i ∧ ϑαJi +
r∑

ℓ=1

γℓ ∧ ψ̃α
J,ℓ, (5.33)

where ψ̃α
J,ℓ = ι(ψα

J,ℓ) = ι(vℓ(θ
α
J )) is the invariantized vertical prolongation coefficient (5.32).

On the other hand, if we apply the projection π̃1,1 to the formula (2.9), we deduce

dH ϑ =

p∑

i=1

̟i ∧ Di ϑ for any contact form ϑ ∈ Ω̃0,1, (5.34)

where the invariant differential operators act by Lie differentiation on the contact form ϑ.
It is worth emphasizing that formula (5.34) is only valid for contact one-forms. Combining
(5.4), (5.33), (5.34), we deduce the recurrence formulae

Diϑ
α
J = ϑαJi +

r∑

ℓ=1

Cℓ
i ψ̃

α
J,ℓ = ι(Diθ

α
J ) (5.35)

for the invariant derivatives of the invariant contact forms. Again, these can be iterated
to produce higher order invariant derivatives

DKϑ
α
J = ι(DKθ

α
J ). (5.36)

Finally, since dV θ
α
J = 0, the remaining two invariant differentials act on contact forms via

dV ϑ
α
J = ι

(
r∑

ℓ=1

βℓ ∧ vℓ(θ
α
J )

)
=

r∑

ℓ=1

εℓ ∧ ψ̃α
J,ℓ, dW ϑαJ = 0. (5.37)

Let us illustrate all the preceding computations with our running example.

Example 5.3. The prolonged infinitesimal generators of the planar Euclidean group
SE(2) acting in the standard manner (1.1) on M = R

2 are

v1 = ∂x, v2 = ∂u,

v3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · .

According to (5.17), to compute the invariant arc length derivative D = Ds of a differential
invariant I = ι(F ) in terms of the normalized differential invariants, we require

DI = Dι(F ) = ι(DF ) = ι
(
DxF + A1 v1(F ) +A2 v2(F )) +A3 v3(F )

)

= ι(DxF ) + C1 ι(v1(F )) + C2 ι(v2(F )) + C3 ι(v3(F )),
(5.38)

where Cℓ = ι(Aℓ) are certain differential invariants. To determine Cℓ we apply the identity
(5.38) to the three phantom invariants

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux) = I1 = 0. (5.39)
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Note that

ι(v1(x)) = ι(1) = 1, ι(v2(x)) = ι(0) = 0, ι(v3(x)) = ι(−u) = 0,

ι(v1(u)) = ι(0) = 0, ι(v2(u)) = ι(1) = 1, ι(v3(u)) = ι(x) = 0,

ι(v1(ux)) = ι(0) = 0, ι(v2(ux)) = ι(0) = 0, ι(v3(ux)) = ι(1 + u2x) = 1,

which are just the invariantizations of the coefficients of the first order prolonged infinites-
imal generators. Therefore, (5.38) yields the three linear equations

0 = DH = 1 + C1, 0 = DI0 = I1 + C2 = C2, 0 = DI1 = I2 + C3 = κ+ C3,

and hence
C1 = −1, C2 = 0, C3 = −κ = −I2. (5.40)

We can choose

A1 = −1, A2 = 0, A3 = −uxx,

as representatives of the differential invariants (5.40). As a result, the differential operator
(5.16) is given explicitly by

D = Dx − ∂x − uxxv3.

Note that we can adopt our normalization values x = u = ux = 0 in this formulae without
any effect on subsequent invariantization, and so one can use the alternative expression

D = uxxx ∂uxx
+ (uxxxx − 3u3xx) ∂uxxx

+ (uxxxxx − 10u2xxuxxx) ∂uxxxx
+ · · · =

∞∑

k=2

Vk ∂uk
,

to generate the recurrence formulae, where, setting uk = Dk
xu,

Duk = Vk = uk+1 −
1

2
uxx

k−1∑

i=2

(
k + 1

i

)
uiuk−i+1. (5.41)

Invariantization of (5.41) gives the key recurrence formulae

DIk = ι(Vk) = Ik+1 −
1

2
I2

k−1∑

i=2

(
k + 1

i

)
Ii Ik−i+1,

of which the first few are

κs = DI2 = I3,

κss = DI3 = I4 − 3I32 ,

DI4 = I5 − 10I22I3,

DI5 = I6 − 15I22I4 − 10I2 I
2
3 .

(5.42)

These can be iteratively solved to produce the explicit formulae

κ = I2, I2 = κ,

κs = I3, I3 = κs,

κss = I4 − 3I32 , I4 = κss + 3κ3,

κsss = I5 − 19I22I3, I5 = κsss + 19κ2κs,

κssss = I6 − 34I22I4 − 48I2I
2
3 + 57I52 , I6 = κssss + 34κ2κss + 48κκ2s + 45κ5,

(5.43)
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relating the fundamental normalized and differentiated Euclidean differential invariants.

Similarly, the vertical recurrence formulae (5.22) can be written as

dV I = dV ι(F ) = ι( dV F ) + ι(v1(F )) ε
1 + ι(v2(F )) ε

2 + ι(v3(F )) ε
3, (5.44)

where the εℓ are certain invariant contact forms. They can be determined by evaluating
(5.44) on the phantom differential invariants (5.39):

0 = dV H = ε1, 0 = dV I0 = ϑ+ ε2, 0 = dV I1 = ϑ1 + ε3.

Therefore

ε1 = 0, ε2 = −ϑ = −ι(θ), ε3 = −ϑ1 = −ι(θ1),

and so the basic vertical differentiation formulae is

dV ι(F ) = ι

(
dV F −

∂F

∂u
θ − v3(F ) θ1

)
= ι

(
∞∑

k=1

∂F

∂uk
θk − v3(F ) θ1

)
. (5.45)

In particular,

dV κ = dV I2 = ϑ2, dV κs = dV I3 = ϑ3 − 3κ2 ϑ1, dV I4 = ϑ4 − 10κκs ϑ1,

and, in general,

dV Ik = ϑk −

(
1

2

k−1∑

i=2

(
k + 1

i

)
Ii Ik−i+1

)
ϑ1. (5.46)

We can now apply these formulas to compute the arc length derivatives of the invariant
contact forms

Dϑk = ι(Dθk) = ι
[
(Dx − uxxv3)θk

]
= ϑk+1 − κ ι(ψk,3) = ϑk+1 − κ ψ̃k,3.

The vertical prolongation coefficients (5.32) are ψk,ν = vν(θk), and so

ψk,1 = ψk,2 = 0, while

ψ0,3 = v3(θ) = uxθ,

ψ1,3 = v3(θx) = 2uxθx + uxxθ,

ψ2,3 = v3(θxx) = 3uxθxx + 3uxxθx + uxxxθ,

and, in general,

ψk,3 =

k∑

i=0

(
k + 1

i

)
uk+1−i θi, ψ̃k,3 = ι(ψk,3) =

k−1∑

i=0

(
k + 1

i

)
Ik+1−i ϑi.

In particular,

Dϑ = ϑ1, Dϑ1 = ϑ2 − κ2 ϑ, Dϑ2 = ϑ3 − 3κ2 ϑ1 − κκs ϑ, (5.47)

and so on. Finally, in the vertical differentiation formula (5.27), the only term that survives
is

dV ̟ = ι(−α3 ∧ θ) = −κϑ ∧̟, (5.48)

since, according to (5.5),

α3 = A3 dx = −uxx dx, γ3 = ι(α3) = −κ̟.
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6. Invariant Euler-Lagrange Equations.

We now apply our invariant quasi-tricomplex construction to derive the formulae for
the Euler-Lagrange equation associated with an invariant variational problem. As above,
we assume throughout that the variational problem is defined on the regular open subset
of jet space where the moving frame is well-defined, and work exclusively thereon. One
can then appeal to continuity, or, in the analytic category, analytic continuation to apply
the resulting formulae to more general invariant Lagrangians.

According to Lie, [24, 29], any G-invariant variational problem can be written in the

form I[u ] =
∫
L̃ ω, where ω ∈ Ωp,0 is a contact-invariant volume form and the invariant

Lagrangian L̃ is an arbitrary differential invariant for the group, and hence a function
of the fundamental differential invariants and their invariant derivatives. The (p, 0) form

λ = L̃ω ∈ Ωp,0 is called the Lagrangian form for the variational problem. The Euler-
Lagrange equations admit G as a symmetry group, and so, under suitable nondegeneracy
hypotheses, cf. [29; Theorem 6.25], can themselves be written in terms of the differential
invariants. The problem is to go directly from the formula for the variational problem in
terms of the fundamental differential invariants to the corresponding differential invariant
formula for the Euler-Lagrange equations.

Let us recall the bicomplex construction of the Euler-Lagrange equations, referring
to [3, 39, 40] for complete details. Given a Lagrangian form λ ∈ Ωp,0, its differential
dλ = dV λ ∈ Ωp,1 defines a form of type (p, 1). We introduce an equivalence relation on
such differential forms Θ,Ω ∈ Ωp,1 as follows:

Θ ∼ Ω if and only if Θ = Ω + dH Υ for some Υ ∈ Ωp−1,1.

Let

π∗ : Ωp,1 −→ F1 ≡ Ωp,1/ ∼ (6.1)

denote the induced projection onto the space of equivalence classes. The elements Σ ∈ F1

are known as source forms . A simple integration by parts argument proves that, in local
coordinates, every source form has a canonical representative

Σ ≃

q∑

α=1

∆α θ
α ∧ dx.

Thus, in local coordinates, there is a one-to-one correspondence between source forms
and q-tuples of differential functions ∆ = (∆1, . . . ,∆q). In applications, a source form is
regarded as defining a system of q differential equations ∆α = 0, α = 1, . . . , q, for the q
dependent variables u = (u1, . . . , uq).

The composite map δ = π∗ ◦d : Ωp,0 → F1 takes a Lagrangian form λ = L[u ] dx =
Ldx1 ∧ · · · ∧ dxp to its variational derivative, which is the source form

δ λ ≃

q∑

α=1

Eα(L) θ
α ∧ dx.
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The components

Eα(L) =
∑

J

(−D)J
∂L

∂uαJ

of the source form δ λ are the classical Eulerian or Euler-Lagrange expressions associated
with the Lagrangian L.

It will be helpful to extend the definition of variational derivative to completely gen-
eral p forms, thereby allowing Lagrangian forms with contact components. The contact
components will play no role in the Euler-Lagrange equations — indeed they vanish when
evaluated on jets of sections — but key invariance properties under the group action will
be retained by this device. We first extend the definition of the source form projection π∗
to allow arbitrary p+ 1 forms, by composition with the the projection onto Ωp,1:

π̃∗ = π∗ ◦πp,1 : Ωp+1 =
⊕

k≥1 Ω
p+1−k,k −→ F1. (6.2)

Thus, π̃∗ only uses the (p, 1) components of the form. Given any p-form λ̃ ∈ Ωp =
⊕

k≥0 Ω
p−k,k, we define

δ λ̃ = π̃∗(dλ̃) = π̃∗( dV λ̃), (6.3)

the horizontal component dH λ̃ being annihilated by the source form projection. Therefore,

the extended Euler derivative δ annihilates all contact components in λ̃.

Lemma 6.1. If πp,0λ = πp,0λ̃, then δ λ = δ λ̃.

Given a Lagrangian form λ ∈ Ωp,0, let λ̃ = π̃p,0(λ) ∈ Ω̃p,0 denote its fully invariant

counterpart. The forms λ and λ̃ differ only by contact forms. Explicitly, if

λ = L̃ ω1 ∧ · · · ∧ ωp, then λ̃ = L̃ ̟1 ∧ · · · ∧̟p,

where L̃ is a differential invariant and ̟1, . . . , ̟p are the invariant horizontal coframe
elements. Lemma 6.1 implies that δ λ = δ λ̃ are the same Euler-Lagrange source form.

Remark : The construction of the fully invariant Lagrangian is very reminiscent of
Carathéodory’s construction of the Cartan form, [7, 34], for a first order multivariate
Lagrangian. See also [28] for recent developments in the higher order theory.

The computation of the Euler-Lagrange equations of an invariant Lagrangian requires
an invariant version of the basic integration by parts formula. This relies on the fact that
the horizontal and invariant horizontal differentials agree modulo contact forms:

Lemma 6.2. If Ω ∈ Ωr,s, then dH Ω = πr+1,s[dH Ω]. Conversely, if Ω̃ ∈ Ω̃r,s, then

dH Ω̃ = π̃r+1,s[dH Ω̃ ].

Corollary 6.3. Two differential forms Ω,Θ ∈ Ωp+1 map to the same source form

π̃∗(Ω) = π̃∗(Θ) ∈ F1 if and only if

π̃p,1(Ω) = π̃p,1(Θ + dH Ψ) for some Ψ ∈ Ωp. (6.4)

As we shall see, the identity (6.4) provides the key to the required invariant integration
by parts formulas.
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7. Variational Problems for Plane Curves.

Before tackling the completely general situation, let us begin with the simplest possible
situation: variational problems for plane curves. Therefore, M = R

2, with p = q = 1, i.e.,
both x and u are scalar variables. As before, we denote derivatives of u by uk = Dk

xu.

An r-dimensional transformation group G acting on the plane is called ordinary if its
(r − 2)nd prolongation acts transitively on an open subset Vr−2 ⊂ Jr−2. Most group are
ordinary, [29]. Moreover, at the end of the following section, we will learn how to handle
the exceptions. By transitivity, we can choose a cross-section to be a point in Vr−2, and
therefore assume — also for simplicity — that we adopt a “standard normalization”

y = c, uk = ck, k = 0, . . . , r − 2, (7.1)

where c, c0, . . . , cr−2 are the normalization constants, for constructing the moving frame.
Let κ = ι(ur−1) denote the resulting fundamental differential invariant — the group-
invariant curvature. The basic invariant horizontal one-form is

̟ = ι(dx) = ω + η, where ω = P (x, u(r−2)) dx (7.2)

is the fundamental contact-invariant one-form — the group-invariant arc length — and
η ∈ Ω0,1 is a contact correction. The dual invariant differentiation operator, or arc length

derivative, is given by D = (1/P )Dx.

Every contact-invariant Lagrangian has the form

λ = L̃(κ(n))ω = L(x, u(n)) dx, where L = L̃ P, (7.3)

cf. (7.2). Here we use κ(n) to denote the arc length derivatives κ, κs, κss of the curvature
invariant up to order n. The Euler-Lagrange equation is also G-invariant, and so, under
suitable nondegeneracy conditions, is equivalent to an equation

F̃ (κ(m)) = 0 (7.4)

involving the curvature and its derivatives. The goal is to find a way of computing the
function F̃ directly from the invariant Lagrangian L̃.

Applying the usual Euler operator

E =

∞∑

i=0

(−Dx)
i ∂

∂ui
(7.5)

to a (non-invariant) Lagrangian L(x, u(n)) produces the Euler-Lagrange equationE(L) = 0.
The invariantized Euler operator is obtained from (7.5) by replacing total x derivatives by
arc length derivatives and the derivatives of u by the corresponding arc length derivatives
of κ, so

E =
∞∑

i=0

(−D)i
∂

∂κi
. (7.6)

The invariant Euler-Lagrange expression (7.4) is not obtained by applying E to the Lag-

rangian L̃(κ, κ1, κ2, . . .) — see Example 1.1 — although this is one of the ingredients in
the final formula.
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In order to compute the associated source form in an invariant manner, we need to
establish an invariant integration by parts formula. If α, β ∈ Ω2 are two-forms then we use
the notation α ≡ β to indicate that they have the same source form π̃∗(α) = π̃∗(β), where
π̃∗:Ω

2 → F1 is the source form projection (6.2). According to (6.4), this is equivalent to
the invariant condition

π̃1,1(α) = π̃1,1(β + dH σ) for some σ ∈ Ω1.

If F is any differential function and σ a differential one-form, then

dH (F σ) = dH F ∧ σ + F dH σ, and so − F dH σ ≡ dH F ∧ σ. (7.7)

In particular, if we choose σ = dV H for some differential function H, then, by (5.13),

dH σ = dH dV H = − dV dHH = − dV (DH̟).

Therefore, (7.7) takes the form

F dV (DH) ∧̟ ≡ −DF dV H ∧̟ − F DH dV ̟. (7.8)

The identity (7.8) is our basic invariant integration by parts formula.

We begin by replacing the contact-invariant Lagrangian form (7.3) by its fully invariant
counterpart

λ̃ = L̃(κ(n))̟ = L̃(κ(n)) (ω + η) = π̃1,0(λ) ∈ Ω̃1,0. (7.9)

Since λ and λ̃ produce the same Euler-Lagrange source form, we can work directly with
fully invariant version when computing the Euler-Lagrange equations. In accordance with
(6.3), we need to compute

dλ̃ = dV λ̃ = dV (L̟̃) = dV L̃ ∧̟ + L̃ dV ̟ =
∑

i

∂L̃

∂κi
dV κi ∧̟ + L̃ dV ̟. (7.10)

We apply our integration by parts formula (7.8) repeatedly to the first term. The first

iteration uses F = ∂L̃/∂κi and H = κi−1 so that DH = κi. Therefore,

∂L̃

∂κi
dV κi ∧̟ ≡ −D

(
∂L̃

∂κi

)
dV κi−1 ∧̟ −

∂L̃

∂κi
κi dV ̟.

Continuing to integrate the first term by parts, we eventually arrive at the formula

dV λ̃ ≡ E(L̃) dV κ ∧̟ −H(L̃) dV ̟. (7.11)

In the first term, E(L̃) denotes the invariantized Euler-Lagrange derivative (7.6) of the

invariant Lagrangian L̃, while the second term involves

H(L̃) =
∑

i>j≥0

κi−j(−D)j
∂L̃

∂κi
− L̃ (7.12)
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which will be called the invariantized Hamiltonian of L̃. This expression forms the invariant
counterpart of the usual Hamiltonian

H(L) =
∑

i>j≥0

ui−j(−Dx)
j ∂L

∂ui
− L (7.13)

associated with a (non-invariant) higher order Lagrangian L(x, u(n)), cf. [3, 10].

The final step is to use our recurrence formulae to determine explicit formulae for
the two remaining (1, 1) forms in (7.11). First, since κ = Ir−1 = ι(ur−1), we can use the
vertical differentiation formula in (5.25), which reads

dV κ = ϑr−1 +
r∑

ℓ=1

Φr−1,ℓ ε
ℓ, where εℓ =

∑

j

Eℓ
j ϑj =

∑

j

Eℓ
j Fj(ϑ) ≡ Gℓ(ϑ), (7.14)

is given in (5.4). The invariant differential operators Fj express the normalized invariant
contact forms ϑj = ι(θj) as arc length derivatives of the basic invariant zeroth order contact
form ϑ = ϑ0, and are explicitly determined by iterating the recurrence formulae (5.35) for
the invariant contact forms. Therefore, we find

dV κ = A(ϑ), where A = Fr−1 +

r∑

ℓ=1

Φr−1,ℓ G
ℓ (7.15)

is a certain invariant differential operator, which will be named the Eulerian operator for
our transformation group.

On the other hand, according to (5.27),

dV ̟ =
r∑

ℓ=1

[
ι

(
∂ξℓ
∂u

)
γℓ ∧ ϑ+ ι (Dxξℓ) ε

ℓ ∧̟

]
. (7.16)

Equation (5.4) implies that γℓ = Cℓ̟, where C1, . . . , Cr are certain differential invariants.
Therefore, using (7.14),

dV ̟ = B(ϑ) ∧̟, where B =
r∑

ℓ=1

[
ι(Dxξℓ)G

ℓ − ι

(
∂ξℓ
∂u

)
Cℓ

]
(7.17)

is another invariant differential operator, which we name the Hamiltonian operator for the
transformation group. Substituting (7.15), (7.17) into (7.11), we find

dV λ̃ ≡ E(L̃)A(ϑ) ∧̟ −H(L̃)B(ϑ) ∧̟. (7.18)

The final stage in the procedure is to integrate both terms by parts in order to move
the invariant differential operators A,B onto the invariant Eulerian and Hamiltonian in
(7.18). For this purpose, formula (5.34) tells us that

dH ψ = ̟ ∧ D ψ (7.19)
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for any contact one-form ψ. Applying this to (7.7), with σ = ψ we find

F Dψ ∧̟ ≡ −DF ψ ∧̟ (7.20)

for any contact one-form ψ and any differential function F . Repeating this process, we see
that if

P =
∑

i

Pi D
i

is an invariant differential operator, where the coefficients Pi are differential invariants,
then

F P(ϑ) ∧̟ ≡ P∗(F )ϑ ∧̟, where P∗ =
∑

i

(−D)i · Pi (7.21)

is the formal invariant adjoint of P — in direct analogy with the usual formal adjoint of
a total differential operator, cf. [27].

Applying this result to (7.18), we finally arrive at the desired identity

dλ̃ ≡
[
A∗E(L̃)− B∗H(L̃)

]
ϑ ∧̟ = δ λ̃, (7.22)

where A∗,B∗ are the formal adjoints of the Eulerian and Hamiltonian differential operators
(7.15), (7.17). We conclude that the Euler-Lagrange equation of our invariant Lagrangian
is equivalent to the G-invariant differential equation

A∗E(L̃)− B∗H(L̃) = 0. (7.23)

Indeed, if we write
π1,1(ϑ ∧̟) =W θ ∧ dx, (7.24)

where W (x, u(n)) is a certain relative differential invariant, cf. [13], then (7.22) implies

E(L) = E(L̃ P ) =W ·
[
A∗E(L̃)− B∗H(L̃)

]
. (7.25)

Therefore, canceling the extraneous factorW produces the differential invariant form (7.23)
the invariant Euler-Lagrange equation in the planar case.

Remark : Since ϑ,̟ form part of the invariant coframe, they are linearly independent,
and henceW (x, u(n)) 6= 0, on the domain of definition of the moving frame. Thus, only sin-
gular extremals can cause W (x, u(n)) = 0 to vanish. When restricted to regular extremals,
the Euler-Lagrange equation and its invariant counterpart are completely equivalent dif-
ferential equations, and so, on nonsingular extremals, the Euler-Lagrange equation can be
written in terms of the fundamental differential invariants. The investigation of singular
extremals and their role in specific examples would be of interest. In particular, are there
examples of invariant variational problems all of whose extremals are singular, and hence
cannot be expressed in terms of the differential invariants? For instance, the differential
equation uxx = 0 admits the projective group SL(3) as a symmetry group, but cannot be
written in terms of projective differential invariants, [29]. However, the associated vari-
ational problem

∫
1
2
u2x dx is not projectively invariant, and so does not provide such an

example.
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Example 7.1. For the Euclidean group SE(2), equation (7.15) is given in (5.46),
namely dV κ = ϑ2 = (D2 + κ2)ϑ. Therefore the Eulerian operator is A = D2 + κ2 = A∗,
which happens to be “invariantly self-adjoint”. On the other hand, formula (7.17) is given
in (5.48), so dV ̟ = −κϑ ∧̟. Therefore, the Hamiltonian operator B = −κ = B∗ is a
multiplication operator, and is also invariantly self-adjoint. According to (4.19), (4.18), ϑ∧
̟ = θ∧dx, and soW = 1 in (7.24). Therefore, the invariant Euler-Lagrange formula (7.25)
reduces to the known formula (1.4) for Euclidean plane curves.

Example 7.2. A more substantial example is provided by the geometry of equi-
affine planar curves, [19]. The equi-affine group SA(2) = SL(2) ⋉ R

2 acts on M = R
2 as

area-preserving affine transformations

g · (x, u) = (αx+ βu+ a, γx+ δu+ b), αδ − βγ = 1. (7.26)

The coordinate cross-section x = u = ux = 0, uxx = 1, uxxx = 0, leads to the classical
equi-affine moving frame, cf. [14]. The fundamental differential invariant is the equi-affine
curvature

κ = ι(uxxxx) =
uxxuxxxx − 5

3u
2
xxx

u8/3xx

. (7.27)

The corresponding invariant horizontal form is

̟ = ι(dx) = ω + η, where ω = ds = u1/3xx dx, η =
uxxx
3u5/3xx

θ,

are, respectively, the standard contact-invariant arc length element and the contact correc-
tion required to make ̟ fully equi-affine invariant. The dual invariant differential operator
D = u−1/3

xx Dx is the equi-affine arc length derivative. All higher order differential invari-
ants are obtained as arc length derivatives of the curvature. We emphasize that the explicit
formulae for κ and D are not required to perform the ensuing computations.

Applying our computational algorithm, but suppressing the details, we first find that

dV κ = ϑ4 −
5
3 κϑ2,

where ϑj = ι(θj) are the normalized invariant contact forms. On the other hand, the
recursion formulas imply that

ϑ1 = Dϑ, ϑ2 = Dϑ1 +
1
3
κϑ =

(
D2 + 1

3
κ
)
ϑ,

ϑ3 = Dϑ2 + κϑ1 =
(
D3 + 4

3κD + 1
3 κs

)
ϑ,

ϑ4 = Dϑ3 + 2κϑ2 +
1
3 κ

2 ϑ =
(
D4 + 10

3 κD
2 + 5

3 κsD + 1
3 κss + κ2

)
ϑ.

Thus we obtain the equi-affine Eulerian operator as

dV κ = A(ϑ), where A = D4 + 5
3
κD2 + 5

3
κsD + 1

3
κss +

4
9
κ2.

On the other hand,

dV̟ = −1
3κϑ+ 1

3 ϑ2 = B(ϑ), where B = 1
3 D

2 − 2
9 κ
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is the Hamiltonian operator. Remarkably, both the Eulerian and Hamiltonian operators
are invariantly self-adjoint: A = A∗ and B = B∗. Therefore, the Euler-Lagrange equation
for an equi-affine invariant Lagrangian L̃(κ, κs, . . .) ds takes the invariant form

A∗E(L̃)−B∗H(L̃) =
(
D4 + 5

3κD
2 + 5

3κsD + 1
3κss +

4
9κ

2
)
E(L̃)−

(
1
3D

2 − 2
9κ
)
H(L̃) = 0.

The equi-affine arc-length functional
∫
ds with L̃ = 1 has E(L̃) = 0, H(L̃) = −1, and

hence the Euler-Lagrange equation is

A∗(0)− B∗(−1) = − 2
9 κ = 0.

We conclude that the minimal equi-affine curves are those with zero equi-affine curvature
— the conic sections. (The reader might be tempted to wrongly speculate that this is
always true: for any planar transformation group G, the minimal G-invariant curves have
zero G-invariant curvature. The projective group provides one explicit counterexample.)
As another example, the variational problem

∫
κ ds has Euler-Lagrange equation

A∗(1)− B∗(−κ) = 2
3
κss +

2
9
κ2 = 0,

the solution to which, [23], gives κ as an elliptic function of s. Unlike Euclidean geometry,
then, λ = κ ds is not a null Lagrangian, and its value cannot be determined by boundary
conditions on the curve.

8. Variational Problems for Curves in Higher Dimensional Manifolds.

Let us next generalize our constructions to the case of curves in higher dimensional
manifolds. Thus, we continue to have only p = 1 independent variable, but are allowing
q ≥ 1 dependent variables, so dimM = 1 + q. In general, the moving frame construction
provides us with a certain number, say m, generating differential invariants I1, . . . , Im,
such that all higher order differential invariants are obtained by invariant differentiation,
Iα,k = DkIα, with respect to the contact-invariant one-form ω, which can be viewed as the
G-invariant arc length element. The comma in the subscript is to remind us that Iα,k is
not the same as the normalized differential invariant Iαk = ι(uαk ). We use the notation
I(n) to denote the collection of all differentiated invariants Iα,k up to some prescribed
order k ≤ n. It is known, [29], that in most situations (the technical hypothesis is
that the group acts transitively on M and its prolonged actions do not pseudo-stabilize)
m = q = dimM − 1, so there are the same number of generating differential invariants
as dependent variables. However, the precise number of generating differential invariants
turns out not to be important for our computation.

A general invariant Lagrangian defines a contact-invariant horizontal one-form λ =
L̃(I(n))ω ∈ Ω1,0. Let ̟ = ω + η = ι(dx) be the fully invariant one-form obtained by the

moving frame normalization, so that the modified Lagrangian form λ̃ = L̃(I(n))̟ ∈ Ω̃1,0

is fully G-invariant. As before, our goal is to construct the Euler-Lagrange equations
directly from the invariant form of the Lagrangian. The same invariant integration by
parts method (7.8) applies to the present situation, leading to the initial identity

dV λ̃ ≡

m∑

α=1

Eα(L̃) dV I
α ∧̟ −H(L̃) dV ̟, (8.1)
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where

Eα(L̃) =
∞∑

n=0

(−D)n
∂L̃

∂Iα,n
, α = 1, . . . , m, (8.2)

is the invariantized Eulerians of L̃, while

H(L̃) =

m∑

α=1

∑

i>j

Iα,i−j(−D)j
∂L̃

∂Iα,i
− L̃ (8.3)

is the invariantized Hamiltonian.

In the second stage of the computation, we apply the infinitesimal moving frame
calculus to determine the formulae

dV I
α =

q∑

β=1

Aα
β(ϑ

β), dV ̟ =

q∑

β=1

Bβ(ϑ
β) ∧̟, α = 1, . . . , m, (8.4)

for the invariant vertical differentials of the fundamental differential invariants and the
invariant horizontal one-form. The Eulerian operator A =

(
Aα

β

)
is an m × q matrix of

invariant differential operators, while the Hamiltonian operator B =
(
Bβ

)
is a 1×q vector

of invariant differential operators. Substituting (8.4) into (8.1) and then integrating by

parts based on (7.21) leads to the key formula dλ̃ ≡ δ λ̃, where

δ λ̃ =




m∑

α=1

q∑

β=1

(Aα
β )
∗Eα(L̃)−

q∑

β=1

(Bβ)
∗H(L̃)


ϑβ ∧̟ =

[
A∗E(L̃)− B∗H(L̃)

]
ϑ ∧̟.

(8.5)
We conclude that the Euler-Lagrange equations are equivalent to the invariant system of
differential equations

A∗E(L̃)− B∗H(L̃) = 0. (8.6)

More explicitly,
E(λ) =W ·

[
A∗E(L̃)− B∗H(L̃)

]
, (8.7)

where the multiplicative matrix-valued relative invariant W =
(
Wα

β

)
is obtained from

writing

ϑα ∧̟ ≡

q∑

β=1

Wα
β θ

β ∧ dx (8.8)

in terms of the non-invariant coframe.

Example 8.1. Consider the usual action w = Rz + a, z = (x, u, v) ∈ R
3, of the

proper Euclidean group (R, a) ∈ SE(3) ≃ SO(3)⋉R
3 on space curves C ⊂ R

3. In order to
keep the computation simple, we assume that the curve is parametrized by (x, u(x), v(x)).
The final formulae, however, do not rely on this special parametrization. As is well known,
[19], the coordinate cross-section

x = u = v = ux = vx = vxx = 0 (8.9)
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produces the classical moving frame. The translation component of its left-equivariant
counterpart (R̃, ã) = ρ(n)(z(n))−1 is the point on the curve, ã = z, while the columns of

the rotation matrix R̃ are the unit tangent, normal, and binormal vectors, cf. [19]. (As
in the planar case, we are ignoring sign ambiguities; see [31] for the complete story.) The
fundamental differential invariants consist of the usual Euclidean curvature and torsion
invariants

κ = ι(uxx), τ = ι

(
vxxx
uxx

)
.

The slight complication, in that classical differential geometry chooses a ratio of normalized
differential invariants for the second fundamental invariant, can easily be handled during
the subsequent computation. The other third order derivative coordinate produces the
first differentiated invariant ι(uxxx) = Dκ = κs. Here D = Ds denotes the derivative with
respect to the usual arc length form ds, which is horizontal component of the invariant
horizontal one-form ̟ = ι(dx).

Any Euclidean-invariant variational problem

I[u ] =

∫
L̃(κ(n), τ (n)) ds

can be rewritten in terms of the curvature, torsion and their arc-length derivatives. To
determine the Euler-Lagrange equations, we must construct the Eulerian and Hamiltonian
operators. Application of our infinitesimal moving frame calculus leads to the required
formulae. First,

dV κ = ι(θuxx) = D2
sϑ

u + (κ2 − τ2)ϑu − 2τDsϑ
v − τsϑ

v,

dV τ = ι

(
uxxθ

v
xxx − uxxxθ

v
xx − vxxxθ

u
xx

u2xx

)
=

2τ

κ
D2

sϑ
u +

3κτs − 2κsτ

κ2
Dsϑ

u +

+
κτss − κsτs + 2κ3τ

κ2
ϑu +

1

κ
D3

sϑ
v −

κs
κ2

D2
sϑ

v +
κ2 − τ2

κ
Dsϑ

v +
κsτ

2 − 2κττs
κ2

ϑv,

where ϑα = ι(θα). Consequently, the Eulerian operator and its adjoint are

A =

(
D2

s + (κ2 − τ2) −2τDs − τs
2τ
κ
D2

s +
3κτs−2κsτ

κ2 Ds +
κτss−κsτs+2κ3τ

κ2
1
κ
D3

s −
κs

κ2D
2
s +

κ2−τ2

κ
Ds +

κsτ
2−2κττs
κ2

)
,

A∗ =

(
D2

s + (κ2 − τ2) 2τ
κ D

2
s +

κτs−2κsτ
κ2 Ds + 2κτ

2τDs + τs − 1
κD

3
s + 2κs

κ2 D
2
s +

κκss−2κ2
s+τ2κ2−κ4

κ3 Ds − κs

)
.

Second, the simpler formula

dV ̟ = −κϑu ∧̟

produces the Hamiltonian operator

B =
(
−κ, 0

)
so that B∗ =

(
−κ
0

)
.
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The resulting invariant Euler-Lagrange formula

δ λ̃ = A∗
(
Eℓ(L̃)

Eτ (L̃)

)
− B∗H(L̃) = 0

agrees with that derived in Anderson, [3]. It is worth emphasizing that these computations
do not require the explicit formulae for the moving frame and the curvature and torsion
invariants, but only rely on the normalization equations (8.9) and the prolonged infinites-
imal generators. Extending these constructions to other examples, e.g., space curves in
affine geometry or projective geometry, is straightforward.

An important observation is that the computation leading to (8.6) does not require
that the differentiated invariants be functionally independent, and so there can be syzygies
(functional relations) among them without affecting the final formula. Moreover, there is
no restriction on the underlying invariant horizontal one-form ̟ = ω + η provided we use
the associated invariant differential operator D. The most natural choice, of course, is to
let ω = ds be the arc length element. However, as first pointed out to us by V. Itskov, [21],
choosing ̟ = dK where K is a differential invariant leads to a significant simplification in
the final result. Indeed, since d̟ = d2K = 0, the Hamiltonian operator B = 0 vanishes,
and so there is no Hamiltonian contribution to (8.6)!

In this case, the dual differential operator DK to ̟ = dK is differentiation with
respect to K, i.e.,

DKF =
dF

dK
=
DxF

DxK
.

We supplement the basic differential invariant K with a suitable generating set I1, . . . , Im

of differential invariants such that a complete system of higher order differential invariants
is given by the derivatives of the Iα with respect to K, namely Iα,n = Dn

KI
α. We can regard

the differential invariant K as an “independent variable” and the additional differential
invariants as “dependent variables”, and hence adopt the notation (K, I(n)) to denote the
collection of all differentiated invariants K, Iα,j for j ≤ n.

In applying this idea, it is important to keep in mind that the use of

dK = dHK + dV K = DK ·̟ + dV K, (8.10)

instead of ̟ = ι( dx) as our basic invariant horizontal form introduces a different invariant
bigrading of the variational bicomplex. We denote the consequent invariant horizontal and
vertical differentials as d̃H , d̃V , respectively. In particular, if I is a differential invariant,
then, in view of (8.10),

d̃H I =
dI

dK
dK, d̃V I = dV I −

dI

dK
dV K. (8.11)

Theorem 8.2. The Euler-Lagrange equations for the invariant Lagrangian λ̃ =
L̂(K, I(n)) dK have the invariant form

Ã ∗ E
(
L̂
)
= 0, (8.12)
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where the invariant Eulerian E
(
L̂
)
has components

Eα
(
L̂
)
=

n∑

j=0

(
−

d

dK

)j
∂L̂

∂Iα,j
, α = 1, . . . , m, (8.13)

while the Eulerian operator Ã is defined by

d̃V I
α =

q∑

β=1

Ãα
β(ϑ

β), α = 1, . . . , m. (8.14)

Note that if we use the moving frame formulae

dV K = K(ϑ), dV I = L(ϑ),

where K,L are certain invariant differential operators, then (8.11) implies that

Ã = L −
dI

dK
K, (8.15)

in which we replace the original invariant differential operator D by (DK)DK . The Euler-
Lagrange equations can be obtained from their invariant counterparts by applying the
Eulerian operator Ã and multiplying by the appropriate relative invariant factor, which,
since

ϑα ∧ dK ≡ DK · ϑα ∧̟,

is obtained by multiplying the previous relative invariant (8.8) by DK.

Example 8.3. As an example, we revisit the planar Euclidean case discussed in
Example 7.1. Let us take K = κ as our “independent differential invariant” and I = κs
as our “dependent differential invariant”. The higher order differential invariants are now
obtained by successive differentiation of I with respect to κ, which we denote by

I,n =
dnI

dκn
, n = 0, 1, 2, . . . .

These higher order differential invariants are related to the arc length derivatives of κ
through the chain rule formula

d

ds
=
dκ

ds

d

dκ
= I

d

dκ
.

For example, I,1 = Iκ = κss/κ. Applying (5.46), (5.47), we have

dV κ = (D2 + κ2)ϑ, dV κs = (D3 + κ2D + 3κκs)ϑ,

and so the Eulerian operator (8.15) takes the form

Ã = D3+κ2D2+3κκs−
κss
κs

(D2 + κ2) = I3D3
κ+2I2IκD

2
κ+(I2Iκκ + κ2I)Dκ+3κ I−κ2Iκ.
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We write the invariant Lagrangian in the alternative form

λ̃ = L̂(κ, I, Iκ, Iκκ, . . . ) dκ = L̂(κ, I, Iκ, Iκκ, . . . )κs ds. (8.16)

Dropping an overall minus sign, according to Theorem 8.2, the Euler-Lagrange equation
has the invariant form

0 = −Ã∗ E
(
L̂
)
=
[
I3D3

κ + 7I2IκD
2
κ + (6I2Iκκ + 10I I2κ + κ2I)Dκ

+ 2I3Iκκκ + 8I IκIκκ + 2I3κ + 2κ2Iκ − κ I
]
E
(
L̂
)
,

(8.17)

where the invariant Euler expression is

E
(
L̂
)
=
∑

n≥0

(
−

d

dκ

)n
∂L̂

∂I,n
.

This result was also derived by Itskov, [21], using an exterior differential systems approach.
Formula (8.17) provides an interesting and attractive alternative to the known version (1.4)
of the Euler-Lagrange equation.

9. Invariant Multivariate Lagrangians.

Let us finally tackle the general case of invariant variational problems corresponding
to higher dimensional submanifolds. We now allow several independent variables, p ≥ 1,
and several dependent variables q ≥ 1. Let

̟i = ι(dxi) = ωi + ηi, ωi ∈ Ω1,0, ηi ∈ Ω0,1, i = 1, . . . , p,

be the invariant horizontal coframe obtained by normalization using the moving frame.
Let ̟ = ̟1 ∧ · · · ∧ ̟p the corresponding fully invariant volume form, whose horizontal
component ω = πp,0(̟) = ω1∧· · ·∧ωp is the basic contact-invariant volume form. Define
the (p− 1)–forms

̟(j) = Dj ̟ = (−1)j−1̟1 ∧ · · · ∧̟j−1 ∧̟j+1 ∧ · · · ∧̟p ∈ Ω̃p−1,0, j = 1, . . . , p.

(9.1)
Note that

̟i ∧̟(j) = δij ̟, (9.2)

where δij is the usual Kronecker delta symbol.

We need to determine the invariant horizontal derivatives of the forms (9.1). Since

dH ̟(j) ∈ Ω̃p,0, it must be a multiple of the invariant volume form, and we write

dH̟(j) = Zj ̟, j = 1, . . . , p, (9.3)

where Z1, . . . , Zp are certain differential invariants, which we will call the twist invariants .
Note that these quantities, which will cause additional complications in the subsequent
formulae, do not appear in the one-variable (curve) case because ̟(1) = 1 has trivial
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differential! The explicit formulae for the twist invariants can be found using (5.28), which
implies that

Zj = −

p∑

i=1

Y i
ij =

p∑

i=1

Y i
ji (9.4)

is the trace of the invariant commutator tensor field Y i
jk.

Every form of invariant type (p− 1, 0) can be written as a linear combination

Ω =

p∑

j=1

Qj
̟(j) ∈ Ω̃p−1,0

of the forms (9.1), and so can be identified with a vector Q = (Q1, . . . , Qp), which is a
vector of differential invariants if and only if Ω is an invariant form. Applying (9.2), (9.3),
we find that the invariant horizontal differential is

dHΩ =




p∑

j=1

(Dj + Zj)Q
j


 ·̟ ∈ Ω̃p,0. (9.5)

The resulting formula should be identified as the invariant divergence of the vector field Q,
the additional Zj factors providing a “twist” to the invariant derivatives Dj. Equation (9.5)

shows that an invariant Lagrangian which can be written as an invariant divergence, L̃ =∑
j (Dj + Zj)Q

j defines a null Lagrangian form λ = L̟̃, meaning that it has identically
zero Eulerian: δλ ≡ 0.

Viewing the divergence as the dual of the invariant gradient, as defined in (5.14), we
are led to the following important definition.

Definition 9.1. The twisted invariant adjoint of the invariant differential operator
Dj is defined as

D †
j = − (Dj + Zj), (9.6)

where Zj is the twist invariant given in (9.3).

More generally, if

P =
∑

K

PK DK =
∑

K

PK Dk1
Dk2

· · ·Dkm
(9.7)

is any scalar invariant differential operator, we define its twisted invariant adjoint to be

P † =
∑

K

D †

K̃
· PK =

∑

K

D †
km

D †
km−1

· · ·D †
k1

· PK (9.8)

=
∑

K

(−1)m(Dkm
+ Zkm

)(Dkm−1
+ Zkm−1

) · · · (Dk1
+ Zk1

) · PK .

Note the reversal in order of the twisted adjoint operators, indicated by K̃ = (km, . . . , k1).
The order is important because the invariant differential operators do not necessarily com-
mute, cf. (5.29). Finally, if A =

(
Aα

β

)
is any matrix of invariant differential operators, we

define its twisted invariant adjoint to be the matrix A † =
(
(Aβ

α)
†
)
, which is the transpose

of the matrix of twisted invariant adjoint operators.
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Lemma 9.2. If F is any differential function, ψ ∈ Ω̃0,1 any invariant contact one-

form, and P any invariant differential operator, then

F P(ψ) ∧̟ ≡ P †(F )ψ ∧̟ (9.9)

project via π̃∗ to the same source form in F1.

Proof : Formulae (5.14), (9.3) imply that, for any one-form σ,

dH (F σ ∧̟(j)) = dH F ∧ σ ∧̟(j) + F dH σ ∧̟(j) − F σ ∧ dH ̟(j)

= −(Dj + Zj)F σ ∧̟ + F dH σ ∧̟(j).
(9.10)

Using (9.6), we can write (9.10) as

−F dH σ ∧̟(j) ≡ (D †
j F ) σ ∧̟. (9.11)

If we let σ = ψ be a contact-one form, and apply (5.34), we deduce that the basic integra-
tion by parts formula

F (Djψ) ∧̟ ≡ − (Dj + Zj)F ψ ∧̟ = (D †
j F )ψ ∧̟ (9.12)

holds for any contact one-form ψ. The lemma now follows by iteration. Q.E.D.

On the other hand, if we choose σ = dV H where H is a differential function in (9.11),
then

dH σ = − dV dHH = −

p∑

i=1

dV (DiH̟i).

This results in the alternative multivariate integration by parts formulae

F d(DjH) ∧̟ = (D †
j F ) dV H ∧̟ −

p∑

i=1

F (DiH) dV ̟
i ∧̟(j). (9.13)

that assumes the role of its univariate counterpart (7.8).

Now, let I1, . . . , Im denote a fundamental set of differential invariants, which means
that the differentiated invariants

Iα,K = D
K̃
Iα = Dkm

Dkm−1
· · ·Dk1

Iα, where K = (k1, . . . , km), (9.14)

contain a complete system of higher order differential invariants. The Iα might be nor-
malized differential invariants arising from a moving frame, but, as we observed at the
end of the preceding section, this is not necessary for the initial computation. The comma
indicates invariant differentiation, and serves to distinguish Iα,K from the normalized differ-
ential invariant IαK = ι(uαK). Since the invariant differential operators do not commute, the
formula for Iα,K depends on the order of the multi-index K. Furthermore, the differentiated
invariants are typically not functionally independent. The complete classification of their
syzygies follows from the infinitesimal moving frame calculus, [15].

Consider an invariant variational problem I[u ] =
∫
L̃(I(n)) ω, where the invariant

Lagrangian L̃ is a function of the differential invariants (9.14). We form the fully invariant

39



Lagrangian form λ̃ = L̃(I(n))̟, obtained by replacing the contact-invariant volume form
ω by its invariant counterpart ̟ = π̃p,0(ω). The fact that we are allowed to invariantly
differentiate Iα in any order — not to mention the possible occurrence of additional syzygies
among the differentiated invariants — imply that there can exist many redundancies in
our formula for the Lagrangian. Remarkably, these play no significant role in the ensuing
computation.

Definition 9.3. The invariant Eulerian of an invariant Lagrangian L̃(I(n)) with
respect to the differential invariant Iα is

Eα(L̃) =
∑

K

D †
K

∂L̃

∂Iα,K
,

where (9.8) (but where the multi-index K has the reverse order) is used to compute the
twisted invariant adjoints of differential operators.

As we saw in the scalar case, besides the invariant version of the Euler expressions,
we also require an invariant version of the Hamiltonian associated with the variational
problem. In the multi-dimensional Hamiltonian framework, [34], the Hamiltonian is no
longer a scalar differential form, but rather a p× p matrix of differential forms.

Definition 9.4. The Hamiltonian tensor H = (Hi
j) associated with a Lagrangian

λ = L(x, u(n)) dx1 ∧ · · · ∧ dxp has components

Hi
j(L) = −L δij +

q∑

α=1

∑

J,K

uαJ,j(−D)K
∂L

∂uαJ,i,K
, (9.15)

where the sum is over all pairs of multi-indices J = (j1, . . . , jr), K = (k1, . . . , ks), either
of which may be empty, so r ≥ 0, s ≥ 0. The final subscript denotes to the concatenated
multi-index (J, i,K) = (j1, . . . , jr, i, k1, . . . , ks).

Remark : For an x-independent Lagrangian, the Hamiltonian tensor provides the con-
servation laws of linear momentum corresponding to the translation independence of the
Lagrangian, resulting in the Noether divergence identity, [27],

p∑

i=1

Di(H
i
j) =

q∑

α=1

uαj Eα(L̃). (9.16)

Definition 9.5. Given a differential invariant L̃(I(n)), we define its invariant Hamil-

tonian tensor to have components

Hi
j(L̃) = − L̃ δij +

m∑

α=1

∑

J,K

Iα,J,j D
†
K

∂L̃

∂Iα,J,i,K
. (9.17)

Note particularly that, due to the noncommutativity of the invariant differential operators,
the order of the multi-indices in (9.17) remains important!
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Remark : An amazing fact is that the final Euler-Lagrange expression will not depend
upon the choice of differential invariants, or their syzygies. On the other hand, according
to Itskov, [21], the individual invariant Eulerian and Hamiltonian do depend on how the
syzygies among differential invariants are implemented.

Proposition 9.6. Given an invariant Lagrangian form λ̃ = L̃(I(n))̟, then

dV λ̃ ≡

m∑

α=1

Eα(L̃) dV I
α ∧̟ −

p∑

i,j=1

Hi
j(L̃) dV ̟

j ∧̟(i). (9.18)

Proof : We begin by computing

dV λ̃ =
∑

α,K

∂L̃

∂Iα,K
dV I

α
,K ∧̟ + L̃ dV ̟.

The second term will be rewritten in the form

L̃ dV ̟ =

p∑

i,j=1

δij L̃ dV ̟
j ∧̟(i). (9.19)

As for the first term, we invoke our integration by parts formula (9.13) to move the invariant

differentiations onto the partial derivatives of L̃. For the first step, we write Iα,K = D
K̃
Iα =

Dkm
Iα,J where J = (k1, . . . , km−1), and so

∂L̃

∂Iα,K
dV I

α
,K ∧̟ =

∂L̃

∂Iα,K
dV (Dkm

Iα,J) ∧̟

≡ D †
km

∂L̃

∂Iα,K
dV (Iα,J) ∧̟ −

p∑

i=1

∂L̃

∂Iα,K
Iα,J,i dV ̟

i ∧̟(km).

The second term contributes to the invariant Hamiltonian tensor (9.17), while we continue
to integrate the first term by parts. In the end, when the invariant differentiations are all
applied to the partial derivative of L̃, we produce the final formula (9.18). Q.E.D.

The second phase of the computation requires, in analogy with (7.15), (7.17), the
formulae for the (p, 1) forms appearing on the right hand side of (9.18),

dV I
α =

q∑

β=1

Aα
β(ϑ

β), dV ̟
j =

p∑

i=1

q∑

β=1

Bj
i,β(ϑ

β) ∧̟i, (9.20)

which follow directly from the moving frame recurrence formulae. We let

A =
(
Aα

β

)
, Bj

i =
(
Bj
i,β

)
, i, j = 1, . . . , p (9.21)

denote, respectively, the Eulerian operator , which is anm×q matrix of invariant differential
operators and the Hamiltonian operator complex , which is a collection of p2 row vectors
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whose entries are invariant differential operators arising in (9.20). This allows us to write
(9.18) in the vectorial form

dV λ̃ ≡ E(L̃)A(ϑ) ∧̟ −

p∑

i,j=1

Hi
j(L̃) B

j
i (ϑ) ∧̟. (9.22)

We now apply Lemma 9.2 to integrate both terms by parts. The final result is written in
terms of the twisted invariant adjoints of the Eulerian and Hamiltonian operators (9.21),
so

dV λ̃ ≡


A † E(L̃)−

p∑

i,j=1

(Bj
i )

†Hi
j(L̃)


 ϑ ∧̟. (9.23)

We have thus proved our final result.

Proposition 9.7. The Euler-Lagrange expressions of an invariant Lagrangian form

λ̃ = L̃(I(n))̟ are equivalent to the invariant system of differential equations

A † E(L̃)−

p∑

i,j=1

(Bj
i )

† Hi
j(L̃) = 0. (9.24)

Indeed,

π̃p,1(ϑ ∧̟) =W · θ ∧ dx, or ϑα ∧̟ ≡

q∑

β=1

Wα
β θ

β ∧ dx, (9.25)

where W =
(
Wα

β

)
is a certain matrix-valued relative invariant. Thus, equating (9.22) to

the standard Euler-Lagrange expression dV λ ≡ E(L)θ∧dx, results in the explicit formula

E(λ) =W


A † E(L̃)−

p∑

i,j=1

(Bj
i )

† Hi
j(L̃)


 (9.26)

connecting the ordinary and invariant versions of the Euler-Lagrange equations. As before,
the matrix relative invariant W is invertible on the domain of definition of the moving
frame, and hence only comes into play at singular extremals.

Example 9.8. Consider the intransitive action

y1 = x1 cosφ− x2 sinφ+ a, y2 = x1 sinφ+ x2 cosφ+ b, v = u, (9.27)

of the Euclidean group SE(2) on R
3. It arises, among other places, as a symmetry group

of the planar Laplace equation, cf. [16, 29]. We shall use the moving frame to construct
differential invariants for surfaces u = f(x1, x2) and then determine the invariant Euler-
Lagrange equations. We pursue this simple example in some detail so as to illustrate the
required computations in more complicated cases.
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We begin by prolonging to J2, of which only the first order formulae will be displayed:

∂v

∂y1
= v1 = u1 cosφ− u2 sinφ,

∂v

∂y2
= v2 = u1 sinφ+ u2 cosφ,

where we abbreviate ui = Diu = Dxiu. Higher order lifted invariants are obtained by
repeatedly applying the implicit differentiations

Dy1 = cosφD1 − sinφD2, Dy2 = sinφD1 + cosφD2. (9.28)

Choosing the cross-section x1 = x2 = u1 = 0, we are led to the normalization equations

y1 = 0, y2 = 0, v1 = 0. (9.29)

Solving for the group parameters produces the (right) moving frame†

a =
x2u1 − x1u2

I
, b = −

x1u1 + x2u2
I

, φ = tan−1 u1
u2
,

and the first two differential invariants

v 7−→ u = ι(u), v2 7−→ I = ‖∇u ‖ =
√
u21 + u22 = ι(u2). (9.30)

Higher order differential invariants are obtained by normalizing the higher order lifted
variables, and are denoted by IJ = ι(uj). For n ≥ 2, there are n+ 1 strictly independent
nth order invariants. For instance, the second order ones are

ι(u11) = I11 = I−2J11, ι(u12) = I12 = I−2J12, ι(u22) = I22 = I−2J22,

where

J11 = u22u11 − 2u1u2u12 + u21u22, J12 = u1u2(u11 − u22) + (u22 − u21)u12,

J22 = u21u11 + 2u1u2u12 + u22u22,

are also differential invariants. The invariant differentiations

D1 =
1

I

(
u2D1 − u1D2

)
, D2 =

1

I

(
u1D1 + u2D2

)
, (9.31)

are dual to the invariant horizontal coframe

̟1 = ω1 = ι(dx1) =
1

I

(
u2 dx

1 − u1 dx
2
)
,

̟2 = ω2 = ι(dx2) =
1

I

(
u1 dx

1 + u2 dx
2
)
=

dH u

‖∇u ‖
.

The invariant volume form is particularly simple in this case: ̟ = ̟1 ∧̟2 = dx1 ∧ dx2,
since Euclidean transformations are measure-preserving.

† There is a remaining sign ambiguity in the definition of the angular variable φ which we
ignore in order to not overly complicate the discussion.
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The prolonged infinitesimal generators are

v1 = ∂x1 , v2 = ∂x2 ,

v3 = −x2 ∂x1 + x1 ∂x2 − u2 ∂u1
+ u1 ∂u2

− 2u12 ∂u11
+ (u11 − u22) ∂u12

+ 2u12 ∂u22
+ · · · .

First, the horizontal differentials of the normalized invariants are given by (5.19). The
phantom invariants can be used to determine the one-forms γℓ, namely

0 = ̟1 + γ1, 0 = ̟2 + γ2, 0 = I11̟
1 + I12̟

2 − I γ3.

Substituting these into the remaining formulae, we find

dH u = I ̟2, dH I = I12̟
1 + I22̟

2,

dH I11 = I111̟
1 + I112̟

2 − 2I12 γ
3

=

(
I111 −

2 I11I12
I

)
̟1 +

(
I112 −

2 I212
I

)
̟2,

dH I12 = I112̟
1 + I12̟

2 + (I11 − I22) γ
3

=

(
I111 +

I11(I11 − I22)

I

)
̟1 +

(
I112 +

I12(I11 − I22)

I

)
̟2,

dH I22 = I122̟
1 + I222̟

2 + 2I12 γ
3

=

(
I111 +

2 I11I12
I

)
̟1 +

(
I112 +

2 I212
I

)
̟2,

which imply the invariant differentiation formulae

D1u = I1 = 0, D2u = I2 = I,

D1I = I12, D2I = I22,

D1I11 = I111 −
2 I11I12

I
, D2I11 = I112 −

2 I212
I

,

D1I12 = I112 +
I11(I11 − I22)

I
, D2I12 = I122 +

I12(I11 − I22)

I
,

D1I22 = I122 +
2 I11I12

I
, D2I22 = I222 +

2 I212
I

.

A key remark is that all differential invariants can be obtained by invariantly differentiating
the simplest one, namely u. The only tricky one is to produce the second order invariant
I11, which is not obtained by taking one derivative of I. However, subtracting the equations
for D2I12 and D1I22 and rearranging terms will produce the desired formulae:

I = D2u, I12 = D1I = D1D2u, I22 = D2I = D2
2u,

I11 = −I22 +
I

I12

(
D2I12 −D1I22

)
= −D2

2u+
D2u

D1D2u

(
D2D1D2u−D1D

2
2u
)
,

which are valid away from singular points where I12 = 0. Therefore, any differential
invariant can be written as a function depending upon u and its invariant derivatives
u,K = D

K̃
u.
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Next we compute the first few vertical differentiation formulae from (5.25). Again,
the phantom invariants (9.29) give the formulae for the one-forms εℓ, namely

0 = ε1, 0 = ε2, 0 = ϑ1 − I ε3.

Substituting these into the remaining formulae, we have

dV u = ϑ, dV I = ϑ2, dV I12 = ϑ12 + (I11 − I22) ε
3 = ϑ12 +

I11 − I22
I

ϑ1,

dV I11 = ϑ11 − 2I12 ε
3 = ϑ11 − 2

I12
I
ϑ1, dV I22 = ϑ22 + 2I12 ε

3 = ϑ22 + 2
I12
I
ϑ1.

The invariant horizontal and vertical differentials of the invariant coframe elements are
based on (5.27), with

dH̟1 = −γ3 ∧̟2 = −
I11
I

̟, dH̟2 = γ3 ∧̟1 = −
I12
I

̟,

dV ̟
1 = −ε3 ∧̟2 = −

1

I
ϑ1 ∧̟

2, dV ̟
2 = ε3 ∧̟1 =

1

I
ϑ1 ∧̟

1.

(9.32)

Since
̟(1) = D1 ̟ = ̟2, ̟(2) = D2 ̟ = −̟1, (9.33)

(9.32) yields the formulae for the twist invariants:

dH ̟(1) = dH̟2 = −
I12
I

̟,

dH ̟(2) = − dH̟1 =
I11
I

̟,

so
Z1 = Y 2

12 = −
I12
I
,

Z2 = −Y 1
12 =

I11
I
.

(9.34)

Indeed, the same terms appear in the commutation formula for the invariant differential
operators, which takes the following equivalent forms:

[D1,D2 ] = Z2 D1 − Z1 D2, or (D1 + Z1)D2 = (D2 + Z2)D1 or D †
1 D2 = D †

2 D1.
(9.35)

Remark : The particular commutation formulae (9.35) are universally valid for ar-
bitrary transformation groups acting on surfaces (two-dimensional submanifolds) in any
higher dimensional manifold.

Finally, we use (5.33) to compute

dH ϑ = ̟1 ∧ ϑ1 +̟2 ∧ ϑ2, D1ϑ = ϑ1, D2ϑ = ϑ2. (9.36)

Since dV u = ϑ, the Eulerian operator is A = 1. Furthermore, (9.32), (9.36) yield the
Hamiltonian operators

B1
1 = B2

2 = 0, −B1
2 = B2

1 =
1

I
D1.

Note finally that ϑ ∧̟ = θ ∧ dx, and so the relative invariant in (9.25) is trivial: W = 1.
Therefore, according to our fundamental formula (9.24), the Euler-Lagrange equations
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for an invariant Lagrangian λ̃ = L̟̃ = Ldx depending on the fundamental differential
invariant u and its invariant derivatives are

E(L) = E(L̃)− (D1 + Z1)

(
H1

2(L̃)−H2
1(L̃)

I

)
= 0, (9.37)

where E(L̃) and Hi
j are, respectively, the invariant Eulerian and Hamiltonian tensor for

the invariant Lagrangian L̃(u(n)) based on the twist invariants (9.34). As an example, for
the surface area Lagrangian

L̃ = I = ‖∇u ‖ =
√
u21 + u22 = D2u,

we have

E(I) = − (D2 + Z2)1 = −Z2 = −
I11
I
, H1

2(I) = 0 = H2
1(I).

Thus, the Euler-Lagrange equation is

0 = E
(
‖∇u ‖

)
= −

I11
I

= −
u22u11 − 2u1u2u12 + u21u22

(u21 + u22)
3/2

,

which expresses the minimal surface equation in Euclidean-invariant form.

Example 9.9. As a final example, we consider the standard action of the Euclidean
group (R, a) ∈ SE(3) on surfaces S ⊂ R

3. The computations provide a simple, direct route
to the fundamental quantities of Euclidean surface geometry. It is worth re-emphasizing
that all the formulae in this example follow from our infinitesimal moving frame calculus
using only linear algebra and differentiation; the explicit formulae for the actual differ-
ential invariants (principal curvatures), the Frenet coframe, the dual invariant differential
operators, the invariant contact forms, etc., are never required! We assume that the sur-
face is parametrized by z = (x, y, u(x, y)), noting that the final formulae are, in fact,
parameter-independent. The classical moving frame construction, [19], relies on the coor-
dinate cross-section

x = y = u = ux = uy = uxy = 0. (9.38)

The resulting (local) left moving frame consists of the point on the curve defining the

translation component ã = z, while the columns of the rotation matrix R̃ contain the unit
tangent vectors forming the Frenet frame along with the unit normal to the surface. The
fundamental differential invariants are the principal curvatures

κ1 = ι(uxx), κ2 = ι(uyy).

The mean and Gaussian curvature invariants

H = 1
2 (κ

1 + κ2), K = κ1κ2,

are often used as convenient alternative invariants, since they eliminate some of the residual
discrete ambiguities in the moving frame. Higher order differential invariants are obtained
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by differentiation with respect to the Frenet coframe ̟1 = ι(dx1), ̟2 = ι(dx2). We let
D1,D2 denote the dual invariant differential operators. The differentiated invariants κα,J
are not functionally independent, since there is a fundamental syzygy

κ1,22 − κ2,11 +
κ1,1κ

2
,1 + κ1,2κ

2
,2 − 2(κ2,1)

2 − 2(κ1,2)
2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0, (9.39)

which is the Codazzi equations . This syzygy can, in fact, be directly deduced from the
infinitesimal moving frame computations by comparing the recurrence formulae for the
differentiated invariants κ1,22 and κ2,11. Note that the denominator in (9.39) vanishes at

umbilic points on the surface, where the principal curvatures coincide κ1 = κ2, and the
moving frame is not valid. We avoid such singular points in our subsequent computations.

Any Euclidean-invariant variational problem has the form

I[u ] =

∫
L̃(κ(n))ω1 ∧ ω2. (9.40)

Here ω1 ∧ ω2 = π2,0(̟
1 ∧ ̟2) is the usual intrinsic surface area 2-form. The invariant

Lagrangian L̃ is an arbitrary differential invariant, and so can be rewritten in terms of
the principal curvature invariants (or, equivalently, in terms of the Gaussian and mean
curvatures) and their derivatives. The former representation leads to simpler formulae
and will be retained. Using (9.33), we obtain the twist invariants

dH ̟(1) = dH̟2 =
κ2,1

κ1 − κ2
̟,

dH ̟(2) = − dH̟1 =
κ1,2

κ2 − κ1
̟,

so
Z1 =

κ2,1
κ1 − κ2

,

Z2 =
κ1,2

κ2 − κ1
.

(9.41)

We note that these key quantities appear in Guggenheimer’s proof of the fundamental
existence theorem for Euclidean surfaces, [19; p. 234], and also Eisenhart, [11; p. 159].
Note that the Codazzi syzygy (9.39) can be written compactly as

K = κ1κ2 = D †
1 (Z1) +D †

2 (Z2) = − (D1 + Z1)Z1 − (D2 + Z2)Z2,

which expresses the Gaussian curvature K as an invariant divergence, cf. (9.5). Conse-
quently, the Gaussian curvature defines a Euclidean-invariant null Lagrangian λ = K ω,
which is the source of the famous Gauss–Bonnet Theorem.

The invariant vertical derivatives of the principal curvatures are straightforwardly
determined via our general methods; supressing the computational details,

dV κ
1 = ι(θxx) =

(
D2

1 + Z2 D2 + (κ1)2
)
ϑ,

dV κ
2 = ι(θyy) =

(
D2

2 + Z1 D1 + (κ2)2
)
ϑ,

(9.42)

where ϑ = ι(θ) = ι(du−ux dx−uy dy) is the fundamental invariant contact form. Therefore,
the Eulerian operator is

A =

(
D2

1 + Z2 D2 + (κ1)2

D2
2 + Z1 D1 + (κ2)2

)
.
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On the other hand,

dV ̟
1 = −κ1 ϑ ∧̟1 +

1

κ1 − κ2
(
D1D2 − Z2D1

)
ϑ ∧̟2,

dV ̟
2 =

1

κ2 − κ1
(
D2D1 − Z1D2

)
ϑ ∧̟1 − κ2 ϑ ∧̟2,

(9.43)

which yields the Hamiltonian operator complex

B1
1 = −κ1,

B2
2 = −κ2,

B1
2 =

1

κ1 − κ2
(
D1D2 − Z2D1

)
=

1

κ1 − κ2
(
D2D1 − Z1D2

)
= −B2

1 ,

the equality following from the commutation formula (9.35). Therefore, according to our
fundamental formula (9.24), the Euler-Lagrange equations for a Euclidean-invariant vari-
ational problem (9.40) are

0 = E(L) =
[
(D1 + Z1)

2 − (D2 + Z2) · Z2 + (κ1)2
]
E1(L̃)

+
[
(D2 + Z2)

2 − (D1 + Z1) · Z1 + (κ2)2
]
E2(L̃) + κ1 H1

1(L̃) + κ2 H2
2(L̃)

+
[
(D2 + Z2)(D1 + Z1) + (D1 + Z1) · Z2

]
·

(
H1

2(L̃)−H2
1(L̃)

κ1 − κ2

)
. (9.44)

As before, Eα(L̃) are the invariant Eulerians with respect to the principal curvatures κα,

while Hi
j(L̃) are the invariant Hamiltonians based on (9.41).

In particular, if L̃(κ1, κ2) does not depend on any differentiated invariants, (9.44)
reduces to

E(L) =
[
(D †

1 )
2 +D †

2 · Z2 + (κ1)2
] ∂L̃
∂κ1

+
[
(D †

2 )
2 +D †

1 · Z1 + (κ2)2
] ∂L̃
∂κ2

− (κ1 + κ2)L̃.

(9.45)

For example, the problem of minimizing surface area has invariant Lagrangian L̃ = 1, and
so (9.45) gives the Euler-Lagrange equation

E(L) = − (κ1 + κ2) = − 2H = 0, (9.46)

and so we conclude that minimal surfaces have vanishing mean curvature. As noted above,
the Gauss–Bonnet Lagrangian L̃ = K = κ1κ2 is an invariant divergence, and hence its the
Euler-Lagrange equation is identically zero. The mean curvature Lagrangian L̃ = H =
1
2
(κ1 + κ2) has Euler-Lagrange equation

1
2

[
(κ1)2 + (κ2)2 − (κ1 + κ2)2

]
= −κ1 κ2 = −K = 0. (9.47)

For the Willmore Lagrangian L̃ = 1
2 (κ

1)2+ 1
2(κ

2)2, [3, 6], formula (9.44) immediately gives
the known Euler-Lagrange equation

E(L) = ∆(κ1 + κ2) + 1
2
(κ1 + κ2)(κ1 − κ2)2 = 2∆H + 4(H2 −K)H = 0, (9.48)

where
∆ = (D1 + Z1)D1 + (D2 + Z2)D2 = −D †

1 · D1 −D †
2 · D2 (9.49)

is the Laplace–Beltrami operator on our surface.
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Remark : Anderson, [3], derives the Euler-Lagrange equations for Euclidean surfaces
by writing the invariant Lagrangian in terms of the first and second fundamental forms
on the surface, whereas, in accordance with our moving frame approach, we write it di-
rectly in terms of the intrinsic principal curvature differential invariants. Bryant, [6], uses
conformal invariance to construct the Euler-Lagrange equations for the Willmore varia-
tional problem. Implementing our methods for the conformal moving frame will give a
formula for the Euler-Lagrange equation associated with a general conformally-invariant
variational problem.

If, as in the discussion at the end of Section 8, instead of the invariant horizontal
coframe ̟1, . . . , ̟p provided by the moving frame, the choice of an invariant coframe
̟i = dKi given by the differentials of p functionally independent differential invariants
K1, . . . , Kp leads to some significant simplifications. First of all, the dual invariant dif-
ferential operators DK = (DK1 , . . . , DKp) all mutually commute. Secondly, dH̟(j) = 0,

and hence the twist invariants Zj = 0 all vanish. Consequently, the adjoints D †

Ki =

−DKi = D∗
Ki mutually commute and are not twisted. Moreover, the second term in the

integration by parts formula (9.13) vanishes, and the result is that there is no Hamiltonian
contribution to the invariant Euler-Lagrange equations.

In addition to the “independent variable” differential invariants K1, . . . , Kp, we re-
quire a certain number of “dependent variable” differential invariants, I1, . . . , Im, with the
property that all higher order differential invariants Iα,J = DJI

α are given by invariant

differentiation of the Iα with respect to the Ki. We denote the complete system of differ-
ential invariants up to order n as (K, I(n)). Note that there may well be nontrivial syzygies
among the differentiated invariants, but these will not affect the final formulae. In view
of the preceding observations, the Euler-Lagrange equations of an invariant Lagrangian of
the form

L̂(K, I(n)) dK1 ∧ · · · ∧ dKp is given by Ã∗ E
(
L̂
)
= 0. (9.50)

The invariant Eulerian expression

Eα
(
L̂
)
=
∑

J

(−DK)J
∂L̂

∂Iα,J
(9.51)

is now identical to the ordinary Euler operator, treating the K’s as independent variables
and the I’s as dependent variables. The associated Eulerian operator Ã =

(
Ãα

β

)
is con-

structed from the formula for the modified vertical derivative of the dependent invariants,

d̃V I
α = Ãα

β(ϑ
β), i = 1, . . . , p, α = 1, . . . , m, (9.52)

where the modified invariant bigrading based on the new invariant horizontal coframe dKi

is used to decompose d = d̃H + d̃V , in analogy with (8.15). See Itskov, [21] for further
developments.

10. Conclusions.

In this paper, we have provided a complete, algorithmic solution to the problem of
constructing the invariant form of the Euler-Lagrange equations associated with a Lag-
rangian which admits a finite-dimensional Lie group as a group of variational symmetries.
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The algorithm relies on the moving frame method, but only requires the infinitesimal gen-
erators, differentiation and linear algebra to construct the required formula. The general
construction of the invariant variational complex can now be applied to a wide range of
symmetry-based investigations in the geometric theory of differential equations and varia-
tional problems. A number of interesting further research directions are inspired by these
results:

(a) While we have treated a few of the most basic examples arising in geometrical appli-
cations, there are a wide variety of additional group actions of current interest in
geometry, physics, and applied mathematics, including computer vision. Further
development of the applications of our formulae for practical problems would be
of immediate interest. In particular, this leads to explicit determination of the
differential invariants that govern minimal submanifolds for a given group action.

(b) One key issue is the proper interpretation of the Eulerian and Hamiltonian operators.
While we have found an constructive algorithm amenable to symbolic computation,
their underlying geometrical and analytical interpretation remains obscure. For
example, the formulae for equi-affine surfaces, [19], was computed, but proved to
be too complex to include in this paper.

(c) Our results cover regular extremals, which are solutions to the differential invariant
version of the Euler-Lagrange equations. It would be of great interest to under-
stand the role of singular extremals, lying outside the domain of definition of the
moving frame and causing the relative differential invariant W (x, u(n)) = 0 in
(7.24) or (9.26) to vanish.

(d) The characteristic cohomology of the invariant complex plays an important role in
many applications. For instance, invariant null Lagrangians underly the curva-
ture integral and Gauss–Bonnet type theorems in Euclidean geometry. Anderson
and Pohjanpelto, [5], and Itskov, [21], identify the local invariant characteristic
cohomology with the Lie algebra cohomology of the transformation group.

(e) In recent work, Itskov, [21], and Olver and Pohjanpelto, [32, 33], have successfully
extended the moving frame method to infinite-dimensional pseudo-group actions,
which arise in physics as gauge groups, in soliton theories, and in fluid mechanics
as particle relabeling symmetries. Further applications to variational problems ad-
mitting infinite-dimensional pseudo-groups of symmetries are under development.

(f ) Our computational formulae should help shed additional light on symmetry reduction
of variational problems and Palais’ principle of symmetric criticality, where one
tries to construct the group-invariant solutions to a variational problem by solving
a problem on the reduced orbit space. Anderson and Fels, [4], have shown that
the applicability of this principle is not universal, but requires the nonvanishing

of a certain Lie algebra cohomology class.

(g) Formula (9.49) and its multidimensional counterpart can be immediately generalized
to any transformation group acting on submanifolds of any dimension. The re-
sult is a distinguished, group-invariant version of the Laplace-Beltrami operator.
Understanding the associated G-invariant harmonic functions, differential forms
and Hodge theory promise significant developments in both theory and potential
applications.
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