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The Invariant Variational Bicomplex

Irina A. Kogan and Peter J. Olver

Abstract. We establish a group-invariant version of the variational bicom-

plex that is based on a general moving frame construction. The main appli-
cation is an explicit group-invariant formula for the Euler-Lagrange equations

of an invariant variational problem.

1. Introduction.

Most modern physical theories begin by postulating a symmetry group and
then formulating field equations based on a group-invariant variational principle.
As first recognized by Sophus Lie, [17], every invariant variational problem can be
written in terms of the differential invariants of the symmetry group. The associated
Euler-Lagrange equations inherit the symmetry group of the variational problem,
and so can also be written in terms of the differential invariants. Surprisingly, to
date no-one has found a general group-invariant formula that enables one to directly
construct the Euler-Lagrange equations from the invariant form of the variational
problem. Only a few specific examples, including plane curves and space curves and
surfaces in Euclidean geometry, are worked out in Griffiths, [12], and in Anderson’s
notes, [3], on the variational bicomplex.

In this note, we summarize our recent solution to this problem; full details
can be found in [16]. Our principal result is that, in all cases, the Euler-Lagrange
equations have the invariant form

(1) A∗E(L̃)− B∗H(L̃) = 0,

where E(L̃) is an invariantized version of the usual Euler-Lagrange expression or

“Eulerian”, while H(L̃) is an invariantized Hamiltonian, which in the multivariate
context is, in fact, a tensor, [20], and A∗,B∗ certain invariant differential operators,
which we name the Eulerian and Hamiltonian operators. Our methods produce an
explicit computational algorithm for determining the invariant differential operators
A∗,B∗, that, remarkably, can be directly constructed from the formulae for the
infinitesimal generators of the transformation group action using only linear algebra
and differentiation.

1991 Mathematics Subject Classification. 53A55, 58J70, 58E40, 35A30, 49S05, 58A20.
Supported in part by NSF Grant DMS 99–83403.

Supported in part by NSF Grant DMS 98–03154.

c©2000 American Mathematical Society

1



2 IRINA A. KOGAN AND PETER J. OLVER

This result will be based on combining two powerful ideas in the modern,
geometric approach to differential equations and the variational calculus. The first
is the variational bicomplex, due to Vinogradov, [23, 24], and Tulczyjew, [22], of
fundamental importance in the study of the geometry of jet bundles, differential
equations and the calculus of variations. Later contributions of Tsujishita, [21], and
Anderson, [1, 3], have amply demonstrated the power of the bicomplex formalism
for both local and global problems in the geometric theory of differential equations
and the calculus of variations.

The second ingredient is an equivariant reformulation of Cartan’s moving frame
theory, [6, 11, 13, 15], due to the second author and Fels, [9, 10]. For a general
finite-dimensional transformation group G, a moving frame is defined as an equi-
variant map from an open subset of jet space to the Lie group G. Once a moving
frame is established, it provides a canonical mechanism, called invariantization,
that allows us to systematically construct the invariant counterparts of all objects
of interest in the usual variational bicomplex, including differential invariants, in-
variant differential forms, etc. The key formula relates the differentials of ordinary
functions and forms to the invariant differentials of invariant functions and forms,
which requires additional “correction terms” similar to the terms that distinguish
covariant derivatives in Riemannian geometry from ordinary derivatives. In partic-
ular, these formulae form the basis for a complete classification of the syzygies and
commutation formulae for differentiated invariants, as first discovered in [10]. The
invariant version of the vertical bicomplex differential will then produce the desired
formula relating invariant variational problems and Euler-Lagrange equations.

The final formula is not elementary; nevertheless, an explicit computational
algorithm based only on infinitesimal data, linear algebra and differentiation is es-
tablished, which allows one to treat very general transformation groups with the
aid of a standard computer algebra system. Our own computations have been im-
plemented in both Mathematica and Maple, and the results compared in order
to give added assurance of their overall correctness. We also note that the Maple

software package Vessiot, [2], developed by Ian Anderson and his students, pro-
vides an extensive collection of general purpose routines for performing complicated
bicomplex constructions. A number of the moving frame algorithms have been suc-
cessfully implemented using the Vessiot package. We also note that V. Itskov has
recently proposed an alternative foundation of the subject, based on a new approach
to symmetry reduction of exterior differential systems and variational problems; see
[14] and his contribution to these proceedings.

2. The Invariant Variational Bicomplex.

We begin with a brief review of the variational bicomplex, relying primarily
on the lucid presentation in [3, 21]. See also [18] for basic results on jet bun-
dles, contact forms, prolongation, etc. Given an m-dimensional manifold M , we let
Jn = Jn(M,p) denote the nth order (extended) jet bundle consisting of equivalence
classes of p-dimensional submanifolds S ⊂M under the equivalence relation of nth

order contact. The infinite jet bundle J∞ = J∞(M,p) is defined as the inverse limit
of the finite order jet bundles under the standard projections πn+1

n : Jn+1 → Jn.
Differential functions, meaning functions F : Jn → R defined on an open subset
of jet space, and differential forms on Jn will be routinely identified with their
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pull-backs to the appropriate open subset of the infinite jet space. When we in-
troduce local coordinates z = (x, u) on M , we consider the first p components
x = (x1, . . . , xp) as independent variables, and the latter q = m − p components
u = (u1, . . . , uq) as dependent variables. The induced coordinates on the jet bundle
J∞ are denoted by z(∞) = (x, u(∞)), consisting of independent variables xi, de-
pendent variables uα, and their derivatives uαJ , α = 1, . . . , q, 0 < #J , of arbitrary
order. Here J = (j1, . . . , jk), with 1 ≤ jν ≤ p, is a symmetric multi-index of order
k = #J .

A differential form θ on J∞ is called a contact form if it is annihilated by all
jets, so that θ | j∞S = 0 for every p-dimensional submanifold S ⊂M . The contact

or vertical subbundle C(∞) ⊂ T∗J∞ is spanned by the contact one-forms. In local
coordinates, every contact one-form is a linear combination of the basic contact

forms

(2) θαJ = duαJ −

p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, 0 ≤ #J.

On the other hand, the coordinate one-forms dx1, . . . , dxp span the complementary
horizontal subbundle H ⊂ T ∗J∞. The splitting T∗J∞ = H ⊕C(∞) of the cotangent
bundle induces a bi-grading Ω∗ =

⊕
Ωr,s of the space of all differential forms on

J∞, with πr,s : Ω
∗ → Ωr,s the projection to the space of forms of bigrade (r, s),

which are linear combinations of wedge products of r horizontal forms dxi and
s contact forms θαK . The differential on J

∞ splits into horizontal and vertical
components, d = dH + dV , where dH : Ω

r,s → Ωr+1,s increases horizontal degree,
and dV : Ω

r,s → Ωr,s+1 increases vertical degree. Closure, d ◦d = 0, implies that
dH ◦ dH = 0 = dV ◦ dV , while dH ◦ dV = − dV ◦ dH . The resulting structure is
known as the variational bicomplex.

Given an r-dimensional Lie group G act smoothly on the manifold M , we let
G(n) denote the nth prolongation of G to the jet bundle Jn = Jn(M,p) induced
by the action of G on p-dimensional submanifolds. If G acts effectively on each
open subset of M then, due to the stabilization theorem [19], the prolonged action
becomes locally free on a dense open subset V ⊂ J∞, known as the regular subset,
and hence, [8], one can find a (locally) invariant coframe, and thus an invariant
version of the variational bicomplex.

As in [10], we introduce the lifted jet bundle B∞ = G × J∞, along with the
regularized prolonged group action g · (h, z(∞)) = (h · g−1, g(∞) · z(∞)). The com-
ponents of the evaluation map w(g, z(∞)) = g(∞) · z(∞) provide a complete system
of lifted differential invariants on B∞. This endows the bundle

B∞ = G× J∞

¡
¡
ª
π @

@R
w

J∞ J∞

with a double fibration structure. The Cartesian product structure on B∞ induces

a bigrading Ω̂∗ =
⊕
Ω̂r,s of the space of differential forms on B∞, where Ω̂r,s is

the space of differential forms which are linear combinations of wedge products of
r jet forms dxi, θαK and s Maurer–Cartan forms µκ. We accordingly decompose
the differential d = dJ + dG into jet and group components, which forms a trivial

product bicomplex structure on B∞. Let Ω̂∗J =
⊕
Ω̂r,0 denote the space of pure jet

forms, i.e., linear combinations of wedge products of dxi, θαK only, whose coefficients
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may depend on jet coordinates and group parameters. The jet projection πJ : Ω̂
∗ →

Ω̂∗J annihilates all the Maurer–Cartan forms.
Local freeness of the prolonged action implies that one can construct a right

(left) moving frame on the regular subset V ⊂ J∞, that is, a locally right (left)
G-equivariant map ρ : V → G. A moving frame defines a G-equivariant section
σ : V → B∞, namely σ(z(∞)) = (ρ(z(∞)), z(∞)). See [10, 16] for the computational
algorithm for explicitly constructing a moving frame, based on Cartan’s method
of normalization, [6], which amounts to a choice of cross-section to the group or-
bits. The most important definition in this paper tells us how to “invariantize” an
arbitrary differential form using the moving frame section.

Definition 1. The invariantization of a differential form Ω on J∞ is the
invariant differential form ι(Ω) = σ∗

(
πJ(w

∗ Ω)
)
.

Invariantization defines a canonical projection (depending upon the moving
frame) from the space of differential forms to the space of invariant differential
forms. In particular the invariantized coordinate functions provide a complete
system of differential invariants,

Hi(x, u(n)) = ι(xi), i = 1, . . . , p,

IαK(x, u
(l)) = ι(uαK), α = 1, . . . , q, k = #K ≥ 0,

known as the normalized differential invariants. Invariantization of the basis one-
forms dxi, θαK provides an invariant coframe

$i = ι(dxi), i = 1, . . . , p,

ϑαK = ι(θαJ ), α = 1, . . . , q, k = #K ≥ 0.

The ϑαK form an invariant basis for the space of contact one-forms, while the in-
variant horizontal forms decompose, $i = ωi + ηi, as a sum of the usual contact-
invariant horizontal forms ωi ∈ Ω1,0, [10, 18], (not to be confused with invariant
contact forms), along with additional contact “corrections” ηi ∈ Ω0,1 so as to make
the $i fully invariant one-forms. If G acts projectably, there are no contact correc-
tions: ηi = 0. The total vector fields D1, . . . ,Dp dual to ω

1, . . . , ωp form a complete
set of invariant differential operators that map differential invariants to differential
invariants, and, more generally, invariant differential forms to invariant differential
forms by Lie differentiation, denoted Di(Ω). The invariant coframe $

i, ϑαJ is used

to bigrade the space of differential forms Ω =
⊕
Ω̃r,s on J∞. If the group acts

non-projectably, the invariant bigradation is different from the standard bicomplex

bigradation, Ωr,s 6= Ω̃r,s.
The most important fact underlying the general construction is that the invari-

antization map ι does not respect the exterior derivative operator. Thus, in general,
d ι(Ω) 6= ι(dΩ). The recurrence formulae, [10, 16], provide the missing “correction
terms” dι(Ω) − ι(dΩ). Remarkably, the correction terms can be algorithmically
constructed using only the infinitesimal generators of the group action!

Let v1, . . . ,vr ∈ g be a basis for the infinitesimal generators of our transforma-
tion group. We adopt the same notation vκ for the prolonged vector field on J

∞

and on B∞ = J∞ × G. Let µ1, . . . , µr be the dual basis for the space of Maurer–
Cartan forms which we view as differential forms on B∞. Let νκ = σ∗µκ be their
pull-backs by the moving frame section. Our key formula is a consequence of the
duality between infinitesimal generators and Maurer–Cartan forms, [16].
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Lemma 2. If Ω is any differential form on J∞, then

(3) d ι(Ω) = ι(dΩ) +
r∑

κ=1

νκ ∧ ι[vκ(Ω)],

where vκ(Ω) denotes the Lie derivative of Ω with respect to the prolonged infinites-

imal generator vκ.

We now decompose (3) into invariant horizontal and vertical components. An
important observation is that the Lie derivative operation does not — unless the
vector field is projectable — preserve the bigrading of our complex. While vκ cer-
tainly maps contact forms to contact forms, if vκ(x

i) = ξiκ(x, u), then vκ(dx
i) =

dξiκ = dH ξ
i
κ+ dV ξ

i
κ is a combination of horizontal and zero

th order contact forms.
Therefore, if Ω ∈ Ωr,s, then vκ(Ω) ∈ Ω

r,s
⊕Ωr−1,s+1, while dΩ ∈ Ωr+1,s

⊕Ωr,s+1.

Consequently, by (3), d Ω̃ ∈ Ω̃r+1,s
⊕ Ω̃r,s+1

⊕ Ω̃r−1,s+2 whenever Ω̃ ∈ Ω̃r,s. We de-
compose the pulled-back Maurer–Cartan forms σ∗µκ = νκ = γκ+εκ into invariant
horizontal and invariant contact forms

(4) γκ =

p∑

i=1

Cκ
i $

i ∈ Ω̃1,0, εκ =
∑

α,J

Eκ,J
α ϑαJ ∈ Ω̃

0,1.

The coefficients Cκ
i , E

κ,J
α are certain differential invariants. Substituting into (3)

allows us to invariantly decompose the differential d = dH + dV + dW , where

(5)

dH ι(Ω) = ι ( dH Ω) +

r∑

κ=1

γκ ∧ ι
(
πr,s[vκ(Ω)]

)
,

dV ι(Ω) = ι ( dV Ω) +

r∑

κ=1

{
εκ ∧ ι

(
πr,s[vκ(Ω)]

)
+ γκ ∧ ι

(
πr−1,s+1[vκ(Ω)]

)}
,

dW ι(Ω) =
r∑

κ=1

εκ ∧ ι
(
πr−1,s+1[vκ(Ω)]

)
.

Application of these three fundamental identities will produce all the basic recur-
rence formulae! In this process, we will repeatedly use the fact that if F is a
differential function and ψ is a contact one-form then

(6) dH F =

p∑

i=1

(Di F )$
i dH ψ =

p∑

i=1

$i ∧ Di ψ.

Warning: The second identity is not true for a general one-form!
The appearance of the extra differential dW makes life more complicated, and

prevents us from using a lot of the standard bicomplex machinery. Breaking the
equation d2 = 0 according to the invariant bigrading leads to the basic formulae

(7)
d2
H = 0, dH dV + dV dH = 0,

d2
W = 0, dV dW + dW dV = 0,

d2
V + dH dW + dW dH = 0.

We will call such a structure a quasi-tricomplex. IfG acts projectably, then dW = 0,
and (7) reduce to the usual bicomplex relations for dH , dV , and so the terminology
“invariant variational bicomplex” is accurate in this case.

Example 3. The Euclidean geometry of plane curves is governed by the
standard action y = x cosφ − u sinφ + a, v = x sinφ + u cosφ + b, of the proper
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Euclidean group g = (φ, a, b) ∈ SE(2) on M = R2. The prolonged group trans-
formations are constructed by applying the implicit differentiation operator Dy =

(cosφ− ux sinφ)
−1Dx to v, and so

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx
(cosφ− ux sinφ)

3
, etc.

Solving the normalization equations y = v = vy = 0 for the group parameters
produces the right moving frame

(8) φ = − tan−1 ux , a = −
x+ uux√
1 + u2

x

, b =
xux − u√
1 + u2

x

.

(The classical moving frame, [13], is the left counterpart obtained by inverting the
group element given in (8).) Invariantization of the coordinate functions, which is
done by substituting the moving frame formulae into the prolonged group transfor-
mations, produces the fundamental normalized differential invariants

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux) = I1 = 0,

ι(uxx) = I2 = κ, ι(uxxx) = I3 = κs, ι(uxxxx) = I4 = κss + 3κ
3,

and so on. The first three, arising from the normalizations, are called phantom

invariants. The lowest order non-trivial differential invariant is the Euclidean cur-
vature I2 = κ = uxx(1 + u

2
x)

3/2, while κs, κss, . . . denote the derivatives of κ with

respect to the arc-length form ω =
√
1 + u2

x dx. The invariant horizontal one-form

(9) $ = ι(dx) =
dx+ ux du√
1 + u2

x

=
√
1 + u2

x dx+
ux√
1 + u2

x

θ.

is a sum of the contact-invariant arc length form along with a contact correction.
In the same manner we obtain the basis invariant contact forms

(10) ϑ = ι(θ) =
θ√
1 + u2

x

, ϑ1 = ι(θx) =
(1 + u2

x) θx − uxuxxθ

(1 + u2
x)

2
, . . .

The prolonged infinitesimal generators of SE(2) are

v1 = ∂x, v2 = ∂u, v3 = −u ∂x + x ∂u + (1 + u
2
x) ∂ux

+ 3uxuxx ∂uxx
+ · · · .

The one-forms γκ, εκ governing the correction terms are found by applying the
recurrence formulae (5) to the phantom invariants. From the first equation in (5),
we obtain

0 = dHH = ι(dHx) + ι(v1(x)) γ
1 + ι(v2(x)) γ

2 + ι(v3(x)) γ
3 = $ + γ1,

0 = dH I0 = ι(dHu) + ι(v1(u)) γ
1 + ι(v2(u)) γ

2 + ι(v3(u)) γ
3 = γ2,

0 = dH I1 = ι(dHux) + ι(v1(ux)) γ
1 + ι(v2(ux)) γ

2 + ι(v3(ux)) γ
3 = κ$ + γ3,

and hence γ1 = −$, γ2 = 0, γ3 = −κ$. Similarly, applying dV to the phantom
invariants and using the second equation in (5) yields ε1 = 0, ε2 = −ϑ, ε3 = −ϑ1.
We are now ready to substitute the non-phantom invariants into (5). The horizontal
differentials dH Ik of the normalized differential invariants In = ι(un) are used to
produce the explicit recurrence formulae

κ = I2, κs = DI2 = I3, κss = DI3 = I4 − 3I
3
2 , . . .

relating them to the differentiated invariants Dmκ. Similarly, the second equation
in (5) gives the vertical differential

(11) dV I2 = dV κ = ι(θ2) + ι(v3(uxx)) ε
3 = ϑ2 = (D

2 + κ2)ϑ,
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where the final equation follows from the invariant contact form recurrence formulae
Dϑ = ϑ1, Dϑ1 = ϑ2−κ

2 ϑ, which are found by applying dH to the invariant contact
forms and using the first equation in (5). Finally, applying the second formula in
(5) to $ yields

(12) dV $ = −κϑ ∧$.

3. Invariant Variational Problems.

We now apply our construction to derive the formulae for the Euler-Lagrange
equations associated with an invariant variational problem. Let us recall the bi-
complex construction of the Euler-Lagrange equations. A variational problem
I[u ] =

∫
L[u ] dx is determined by the Lagrangian form λ = L[u ] dx ∈ Ωp,0.

Its differential dλ = dV λ ∈ Ω
p,1 defines a form of type (p, 1). We introduce an

equivalence relation on such forms, so that Θ ∼ Ω if and only if Θ = Ω + dH Ψ
for some Ψ ∈ Ωp−1,1. The quotient space F1 = Ωp,1/ ∼ is known as the space of
source forms. Integration by parts proves that every source form has a canonical
representative

∑q
α=1 ∆α(x, u

(n)) θα ∧ dx, and so can be identified with a q-tuple of
differential functions ∆ = (∆1, . . . ,∆q). In applications, a source form is regarded
as defining a system of q differential equations ∆1 = · · · = ∆q = 0 for the q depen-

dent variables u = (u1, . . . , uq). Composing the differential d : Ωp,0 → Ωp,1 with
the projection π∗ : Ω

p,1 → F1 produces the variational differential δ = π∗ ◦d that
takes a Lagrangian form λ = L[u ] dx to its variational derivative source form

(13) δ λ '

q∑

α=1

Eα(L) θ
α ∧ dx, where Eα(L) =

∑

J

(−D)J
∂L

∂uαJ

are the classical Eulerian (Euler-Lagrange) expressions for the Lagrangian L. We
extend the definition of the variational derivative δ : Ωp → F1 to general p forms

by setting δλ̃ = π∗ ◦πp,1(dλ̃). Note that δλ̃ = δλ depends only on the horizontal

component λ = πp,0(λ̃), while annihilating all contact components of λ̃.

According to Lie, [17, 18], as long as we work on the regular open subset
V ⊂ J∞, any G-invariant variational problem is given by an invariant Lagrangian

form λ = L̃ ω, where ω = ω1∧· · ·∧ωp is the contact-invariant volume form, and the

invariant Lagrangian L̃ is an arbitrary differential invariant, and hence a function
of the fundamental differential invariants and their invariant derivatives. The asso-
ciated Euler-Lagrange equations E(L) = 0 admit G as a symmetry group, and so,
under suitable nondegeneracy hypotheses, [18, Theorem 6.25], can themselves be
written in terms of the differential invariants. The problem is to go directly from the
differential invariant formula for the variational problem to the differential invariant
formula for the Euler-Lagrange equations.

Let us first treat the easier case of curves or one-dimensional submanifolds,
so we have only p = 1 independent variable and q ≥ 1 dependent variables, where
dimM = 1+q. In general, the moving frame construction provides us with a certain
number, say `, generating differential invariants I1, . . . , I`, such that all higher order
differential invariants are obtained by invariant differentiation, Iα,k = D

kIα, with
respect to the contact-invariant one-form ω, which can be viewed as the G-invariant
arc length element. The comma in the subscript is to remind us that Iα,k is not the

same as the normalized differential invariant Iαk = ι(uαk ). We use the notation I
(n)

to denote the collection of all differentiated invariants Iα,k up to some prescribed
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order k ≤ n. It is known, [18], that in most situations ` = q, so there are the same
number of generating differential invariants as dependent variables.

A general invariant Lagrangian defines a contact-invariant horizontal one-form

λ = L̃(I(n))ω ∈ Ω1,0. We replace the contact-invariant Lagrangian form with its

fully invariant counterpart λ̃ = L̃(I(n))$ ∈ Ω̃1,0, where $ = ω + η = ι(dx) is the
fully invariant one-form obtained by invariantization. We need to compute

(14) dV λ̃ = dV (L̃$) = dV L̃ ∧$ + L̃ dV $ =
∑

i,α

∂L̃

∂Iα,i
dV I

α
,i ∧$ + L̃ dV $.

We adopt the notation Ω ≡ Θ to indicate that the forms Ω,Θ ∈ Ωp+1 have the same
source form π̃∗(Ω) = π̃∗(Θ), which occurs if and only if πp,1(Ω) = πp,1(Θ) + dHΨ

for some Ψ ∈ Ω̃p−1,1. If F is any differential function and ψ is a contact one-form,

(15) dH (F ψ) = dH F ∧ ψ + F dH ψ, and so − F dH ψ ≡ dH F ∧ ψ.

From (6) it follows that

(16) F (Dψ) ∧$ ≡ − (DF )ψ ∧$.

In particular, if we choose ψ = dV H for some differential function H, then, by (7),

dH ψ = dH dV H = − dV dHH = − dV (DH ·$).

Therefore, (15) takes the form

(17) F dV (DH) ∧$ ≡ −DF dV H ∧$ − F (DH) dV $.

Equations (16), (17) constitute our basic invariant integration by parts formulae.
We now iteratively apply (17) to the first term of (14). The first iteration uses

F = ∂L̃/∂Iα,i and H = Iα,i−1 so that DH = Iα,i . Therefore,

∂L̃

∂Iα,i
dV I

α
,i ∧$ ≡ −D

(
∂L̃

∂Iα,i

)
dV I

α
,i−1 ∧$ −

∂L̃

∂Iα,i
Iα,i dV $.

Continuing to integrate the first term by parts, we eventually arrive at the formula

(18) dV λ̃ ≡

m∑

α=1

Eα(L̃) dV I
α ∧$ −H(L̃) dV $,

where

(19) Eα(L̃) =
∞∑

i=0

(−D)i
∂L̃

∂Iα,i
, α = 1, . . . ,m,

is, by analogy with (13), the invariantized Eulerian of L̃, while

(20) H(L̃) =
m∑

α=1

∑

i>j

Iα,i−j(−D)
j ∂L̃

∂Iα,i
− L̃

is the invariantized Hamiltonian, which is the counterpart of the usual Hamiltonian

(21) H(L) =

m∑

α=1

∑

i>j≥0

uαi−j(−Dx)
j ∂L

∂uαi
− L

associated with a (non-invariant) higher order Lagrangian L(x, u(n)), cf. [3, 7].
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In the second phase of the computation, we use the recurrence formulae to
compute the vertical differentials

(22) dV I
α =

q∑

β=1

Aα
β (ϑ

β), dV $ =

q∑

β=1

Bβ(ϑ
β) ∧$, α = 1, . . . ,m,

in terms of invariant derivatives of the zeroth order invariant contact forms. The
m×q matrix of invariant differential operatorsA =

(
Aα
β

)
will be called the Eulerian

operator, while the 1 × q vector of invariant differential operators B =
(
Bβ
)
is

called the Hamiltonian operator. We finally substitute (22) into (18) and integrate
by parts using (16) to obtain the key formula

dλ̃ ≡ δ λ̃ =




m∑

α=1

q∑

β=1

(Aα
β )
∗Eα(L̃)−

q∑

β=1

(Bβ)
∗H(L̃)


ϑβ ∧$

=
[
A∗E(L̃)− B∗H(L̃)

]
ϑ ∧$,

where ϑ =
(
ϑ1, ϑ2, . . . , ϑq

)T
. Here ∗ denotes the formal invariant adjoint of an

invariant differential operator, so if P =
∑

n Pk D
k, then P∗ =

∑
k (−D)

k ·Pk. We
conclude that the Euler-Lagrange equations for our invariant variational problem
are equivalent to the invariant system of differential equations (1).

Example 4. Continuing with Example 3, any Euclidean-invariant variational

problem corresponds to a contact invariant Lagrangian λ = L̃(κ, κs, κss, . . .)ω. To
compute the Eulerian and Hamiltonian operators we use (22), which, according to
(9), (10), take the form dV κ = (D

2 + κ2)ϑ and dV $ = −κϑ ∧$. Therefore, the
Eulerian operator is A = D2+κ2 = A∗, while the Hamiltonian operator B = −κ =
B∗ is a multiplication operator by −κ. Both happen to be invariantly self-adjoint.
The invariant Euler-Lagrange formula (1) reduces to the known formula, [3, 12],

(D2 + κ2) E(L̃) + κH(L̃) = 0

for the Euclidean-invariant Euler-Lagrange equation.

Let us now tackle the general case of invariant variational problems correspond-
ing to higher dimensional submanifolds. Let I1, . . . , I` denote a fundamental set of
differential invariants, which means that the differentiated invariants

(23) Iα,K = DK̃I
α = Dkm

Dkm−1
· · · Dk1

Iα, where K = (k1, . . . , km),

contain a complete system of higher order differential invariants. Since the invariant
differential operators do not, in general, commute — see [10, 16] for the explicit
commutation formulae — the order of differentiation is important. The fact that
we are allowed to invariantly differentiate Iα in any order — not to mention the
possible occurrence of additional syzygies among the differentiated invariants, [10],
— imply that there can exist many redundancies in our formula for the invariant

Lagrangian λ̃ = L̃ $, where $ = $1 ∧ · · · ∧ $p is the invariant volume form.
Remarkably, these play no significant role in the ensuing computation.

As before we begin by computing

(24) dV λ̃ =
∑

α,K

∂L̃

∂Iα,K
dV I

α
,K ∧$ + L̃ dV $,
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Introduce the (p− 1)–forms

$(i) = Di $ = (−1)i−1$1 ∧ · · · ∧$i−1 ∧$i+1 ∧ · · · ∧$p ∈ Ω̃p−1,0.

If F is any differential function and ψ any contact one-form, then

(25) dH (F ψ ∧$(i)) = dH F ∧ ψ ∧$(i) + F dH ψ ∧$(i) − F ψ ∧ dH$(i).

Since dH$(i) ∈ Ω̃
p,0, it must be a multiple of the invariant volume form, and we

write dH$(i) = Zi$, where Z1, . . . , Zp are certain differential invariants, which

we will call the twist invariants. Using (6) we can rewrite (25) as

(26) F dH ψ ∧$(i) = F (Diψ) ∧$ ≡ −
[
(Di + Zi)F

]
ψ ∧$ = (D †i F )ψ ∧$,

where D †i = − (Di + Zi) is called the twisted invariant adjoint of the invariant
differential operator Di. If we choose ψ = dV H where H is a differential function,
then (26) results in the multivariate invariant integration by parts formula

(27) F d(DiH) ∧$ = (D
†
i F ) dV H ∧$ −

p∑

j=1

F (DjH) dV $
j ∧$(i).

We use (27) repeatedly to integrate the first term of (24) by parts, leading to

(28) dV λ̃ ≡

q∑

α=1

Eα(L̃) dV I
α ∧$ −

p∑

i=1

Hi
j(L̃) dV $

j ∧$(i),

where

(29) Eα(L̃) =
∑

K

D †K
∂L̃

∂Iα,K
, Hi

j(L̃) = − L̃ δ
i
j +

q∑

α=1

∑

J,K

Iα,J,j D
†
K

∂L̃

∂Iα,J,i,K
,

are, respectively, the invariant Eulerian and invariant Hamiltonian tensor of the

invariant Lagrangian L̃. In (29), we use the twisted adjoints

D †K = D
†
k1
· · · D †km

= (−1)m(Dk1
+ Zk1

) · · · (Dkm
+ Zkm

), K = (k1, . . . , km),

of the repeated invariant differential operators. Note the reversal in the order of
differentiation from that in (23).

The second phase of the computation requires, in analogy with (22), the vertical
differentiation formulae

(30) dV I
α =

q∑

β=1

Aα
β (ϑ

β), dV $
j =

q∑

β=1

Bji,β(ϑ
β) ∧$i,

where A =
(
Aα
β

)
denotes the Eulerian operator, which is an m × q matrix of

invariant differential operators, while the p2 row vectors Bji =
(
Bji,β

)
of invariant

differential operators form the invariant Hamiltonian operator complex. This allows
us to write (28) in the vectorial form

dV λ̃ ≡ E(L̃)A(ϑ) ∧$ −

p∑

i,j=1

Hi
j(L̃) B

j
i (ϑ) ∧$.
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We now apply (26) to further integrate both terms by parts. The final result is
written in terms of twisted adjoints of Eurlian and Hamiltonian operators,

dV λ̃ ≡ δλ̃ =


A † E(L̃)−

p∑

i,j=1

(Bji )
†Hi

j(L̃)


 ϑ ∧$.

Proposition 5. The Euler-Lagrange expressions of an invariant Lagrangian

form λ̃ = L̃(I(n))$ are equivalent to the invariant system of differential equations

(31) A † E(L̃)−

p∑

i,j=1

(Bji )
†Hi

j(L̃) = 0.

Example 6. Consider the standard action of the Euclidean group (R, a) ∈
SE(3) on surfaces S ⊂ R3. The moving frame computations provide a simple,
direct route to the fundamental quantities of Euclidean surface geometry, [13].
It is worth re-emphasizing that all the formulae in this example follow from our
infinitesimal moving frame calculus using only linear algebra and differentiation;
the explicit formulae for the actual differential invariants (principal curvatures),
the Frenet coframe, the invariant contact forms, etc., are never required! We as-
sume that the surface is parametrized by z = (x, y, u(x, y)), noting that the final
formulae are, in fact, parameter-independent. The classical (local) left moving
frame ρ(x, u(2)) = (a,R) ∈ SE(3) consists of the point on the curve defining the
translation component a = z, while the columns of the rotation matrix R con-
tain the unit tangent vectors forming the Frenet frame along with the unit normal
to the surface. The fundamental differential invariants are the principal curva-
tures κ1 = ι(uxx), κ

2 = ι(uyy). The mean and Gaussian curvature invariants

H = 1
2 (κ

1 + κ2), K = κ1κ2, are often used as convenient alternative invariants,
since they eliminate some of the residual discrete ambiguities in the moving frame.
Higher order differential invariants are obtained by differentiation with respect to
the dual invariant differential operators D1,D2 for the Frenet coframe $

1 = ι(dx1),
$2 = ι(dx2). The differentiated invariants are not functionally independent, since
there is a fundamental syzygy

(32) κ1
,22 − κ

2
,11 +

κ1
,1κ

2
,1 + κ

1
,2κ

2
,2 − 2(κ

2
,1)

2 − 2(κ1
,2)

2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0,

arising from the Codazzi equations. The Codazzi syzygy can, in fact, be directly
deduced from our infinitesimal moving frame computations by comparing the re-
currence formulae for κ1

,22 and κ
2
,11 with the normalized invariant ι(uxxyy).

Any Euclidean-invariant variational problem has the form
∫
L̃(κ(n))ω1 ∧ ω2,

where ω1 ∧ ω2 = π2,0($
1 ∧ $2) is the usual intrinsic surface area 2-form. The

invariant Lagrangian L̃ is an arbitrary differential invariant, and so can be rewritten
in terms of the principal curvature invariants and their derivatives, or, equivalently,
in terms of the Gaussian and mean curvatures. The former representation leads to
simpler formulae and will be retained. From the first formula in (5), we obtain the

twist invariants dH$(1) = dH$
2 =

κ2
,1

κ1 − κ2
$, dH$(2) = − dH$

1 =
κ1
,2

κ2 − κ1
$,

so Z1 =
κ2
,1

κ1 − κ2
, Z2 =

κ1
,2

κ2 − κ1
. The twist invariants appear in Guggenheimer’s

proof of the fundamental existence theorem for Euclidean surfaces, [13, p. 234]. The
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denominator vanishes at umbilic points on the surface, where the moving frame is
not valid. The Codazzi syzygy (32) can be written compactly as

K = κ1κ2 = D †1 (Z1) +D
†
2 (Z2) = − (D1 + Z1)Z1 − (D2 + Z2)Z2,

which expresses the Gaussian curvature K as an invariant divergence. This fact
lies at the heart of the Gauss–Bonnet Theorem. The invariant vertical derivatives
of the principal curvatures are straightforwardly determined from (5),

dV κ
1 = ι(θxx) =

(
D2

1 + Z2D2 + (κ
1)2
)
ϑ,

dV κ
2 = ι(θyy) =

(
D2

2 + Z1D1 + (κ
2)2
)
ϑ,

where ϑ = ι(θ) = ι(du− ux dx− uy dy) is the fundamental invariant contact form.

Therefore, the Eulerian operator is A =

(
D2

1 + Z2D2 + (κ
1)2

D2
2 + Z1D1 + (κ

2)2

)
. Further,

dV $
1 = −κ1 ϑ ∧$1 +

(
D1D2 − Z2D1

)
ϑ ∧$2

κ1 − κ2
,

dV $
2 =

(
D2D1 − Z1D2

)
ϑ ∧$1

κ2 − κ1
− κ2 ϑ ∧$2,

which yields the Hamiltonian operator complex

B1
1 = −κ

1,

B2
2 = −κ

2,
B1

2 =
1

κ1 − κ2

(
D1D2 − Z2D1

)
=

1

κ1 − κ2

(
D2D1 − Z1D2

)
= −B2

1.

Therefore, according to our fundamental formula (5), the Euler-Lagrange equation
for a Euclidean-invariant variational problem is

0 =
[
(D1 + Z1)

2 − (D2 + Z2) · Z2 + (κ
1)2
]
E1(L̃)

+
[
(D2 + Z2)

2 − (D1 + Z1) · Z1 + (κ
2)2
]
E2(L̃) + κ

1H1
1(L̃) + κ

2H2
2(L̃)

+
[
(D2 + Z2)(D1 + Z1) + (D1 + Z1) · Z2

]
·

(
H1

2(L̃)−H
2
1(L̃)

κ1 − κ2

)
.

As before, Eα(L̃) are the invariant Eulerians with respect to the principal curvatures

κα, while Hi
j(L̃) are the invariant Hamiltonians. In particular, if L̃(κ

1, κ2) does not
depend on any differentiated invariants, the Euler-Lagrange equation reduces to

[
(D †1 )

2 +D †2 · Z2 + (κ
1)2
] ∂L̃
∂κ1

+
[
(D †2 )

2 +D †1 · Z1 + (κ
2)2
] ∂L̃
∂κ2

− (κ1 + κ2)L̃ = 0.

For example, the problem of minimizing surface area has invariant Lagrangian

L̃ = 1, and so has the well-known Euler-Lagrange equation E(L) = − (κ1 + κ2) =
− 2H = 0, and hence minimal surfaces have vanishing mean curvature. The mean

curvature Lagrangian L̃ = H = 1
2 (κ

1 + κ2) has Euler-Lagrange equation

1
2

[
(κ1)2 + (κ2)2 − (κ1 + κ2)2

]
= −κ1 κ2 = −K = 0.

For the Willmore Lagrangian L̃ = 1
2 (κ

1)2+ 1
2 (κ

2)2, [3, 5], we immediately find the
known Euler-Lagrange equation

0 = E(L) = ∆(κ1 + κ2) + 1
2 (κ

1 + κ2)(κ1 − κ2)2 = 2∆H + 4(H2 −K)H,

where ∆ = (D1+Z1)D1+(D2+Z2)D2 = −D
†
1 ·D1−D

†
2 ·D2 is the Laplace–Beltrami

operator on our surface.
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Remark : Anderson, [3], derives the Euler-Lagrange equations for Euclidean sur-
faces by writing the invariant Lagrangian in terms of the first and second funda-
mental forms on the surface, whereas, in accordance with our moving frame ap-
proach, we write it directly in terms of the intrinsic principal curvature differential
invariants. Bryant, [5], uses conformal invariance to construct the Euler-Lagrange
equations for the Willmore functional. Implementing our methods for the confor-
mal moving frame will give a formula for the Euler-Lagrange equation of a general
conformally-invariant variational problem.

4. Conclusions.

In this paper, we have provided a complete, algorithmic solution to the problem
of constructing the invariant form of the Euler-Lagrange equations associated with
a Lagrangian which admits a finite-dimensional Lie group of variational symmetries.
The algorithm relies on the equivariant moving frame method, but only requires the
infinitesimal generators, differentiation and linear algebra to construct the required
formulae. This is in contrast to the explicit determination of the moving frame
and the fundamental differential invariants, which typically requires manipulating
rational algebraic expressions, which are notoriously difficult to handle efficiently
and accurately in current computer algebra systems.

The general construction of the invariant variational bicomplex based on the
equivariant moving frame approach can be applied to a broad range of investigations
involving group-invariant quantities appearing in the variational bicomplex, includ-
ing differential equations, variational problems, conservation laws and characteristic
classes. In particular, Anderson and Pohjanpelto, [4], identify the cohomology of
the invariant bicomplex with the Lie algebra cohomology of the transformation
group. We refer the reader to [16] for more details and additional examples.

Acknowledgments: We would like to thank Ian Anderson, Mark Fels, Vladimir It-
skov and Niky Kamran for enlightening discussions on this material.
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