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ABSTRACT

In this paper we obtain, for the first time, explicit formulae for integral invariants for curves in 3D with respect
to the special and the full affine groups. Using an inductive approach we first compute Euclidean integral
invariants and use them to build the affine invariants. The motivation comes from problems in computer vision.
Since integration diminishes the effects of noise, integral invariants have advantage in such applications. We use
integral invariants to construct signatures that characterize curves up to the special affine transformations.

Keywords: 3D affine and Euclidean transformations, integral affine invariants, moving frames, object classifi-
cation

1. INTRODUCTION

Invariants under the actions of the Euclidean, affine and projective groups are widely used in shape/object
recognition problems in image processing and computer vision.1–5 Differential invariants, such as Euclidean
curvature and torsion for space curves, are the most classical. The affine and projective counterparts of curvature
and torsion may also be defined. The practical utilization of differential invariants is, however, limited due to
their high sensitivity to noise. Indeed, Euclidean curvature and torsion depend on derivatives of up to order 2
and 3 respectively, and their affine analogs depend on derivatives of up to order 6. If the original data is noisy,
the numerical differentiation amplifies the effects of noise. This motivated the high interest in other types of
invariants such as semi-differential, or joint invariants6–9 and various types of integral invariants.10–13 Integral
invariants in the above references depend on quantities obtained by integration of various functions along a curve.
The type of integral invariants that we consider was introduced by,13 and can be thought as the 1-dimensional
analog of moment invariants.14, 15 Since integration reduces the effect of noise, integral invariants hold a clear
advantage in practical applications. Explicit expressions for integral invariants, however, appear to be known
only for curves in 2D, as computations become challenging in 3D.

In this paper we obtain, for the first time, explicit formulae of integral affine invariants for 3D curves. The
standard action of the affine group on R

3 induces an action on curves. Following the approach of Ref. 13 we
prolong the action to certain integral expressions, called potentials, and then compute invariants that depend
on these integral variables. The computation was performed using an inductive variation16 of the Fels-Olver
moving frame construction.17 This approach allows us to build invariants for the entire group from invariants of
its subgroup, and in our case affine invariants in terms of Euclidean ones. We begin by constructing the affine
invariant for plane curves (first obtained in Ref. 13) in terms of Euclidean invariants, and then obtain two new
special affine invariants for space curves. Their quotient is invariant under the action of the full affine group.
The result is given in Section 3, while the inductive derivation is postponed to Section 4. In Section 3 we use the
derived invariants to define integral signatures. The signature of a curve is obtained by plotting one independent
invariant, evaluated on the curve, versus another. If one curve can be mapped to another curve by a group
transformation, then their signatures coincide. The signatures are independent of a parameterization and of a
choice of the initial point on a curve. Applications of signatures based on differential invariants and on joint
invariants were, for instance, explored in curve classification in Ref. 8,9,18–20. In Ref. 12 integral signatures for
plane curves were constructed to classify curves up to Euclidean transformations. These signatures are based on
a different type of integral invariants than the ones considered in this paper. A detailed analysis of the signatures
constructed in the present paper and practical experiments are in progress.?
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2. GROUP ACTION AND INVARIANTS

2.1. Definitions

Definition 2.1. An action of a group G on a set S is a map α:G × S → S that satisfies the following two
properties:

1. α(e, s) = s, ∀s ∈ S, where e is the identity of the group.

2. α(g1, α(g2, s)) = α(g1 g2, s), for all s ∈ S and g1, g2 ∈ G.

For g ∈ G and s ∈ S we write α(g, s) = g · s = s.

We will use the following terminology from group theory.

Definition 2.2. The orbit of a point s ∈ S is the set Os = {g · s|g ∈ G}.

Definition 2.3. A subset S1 ⊂ S is invariant if g · s ∈ S1 for ∀s ∈ S1 and ∀g ∈ G.∗

Definition 2.4. An action of G is called free if ∀s ∈ S the isotropy group Gs = {g ∈ G|g · s = s} = {e}. An
action of G is called locally free if ∀s ∈ S the isotropy group Gs is discrete.

Let GL(n) denote a group of non-degenerate n × n matrices. Its subgroup of matrices with determinant 1
is denoted by SL(n). The orthogonal group is O(n) = {A ∈ GL(n)|AAT = I}, while the special orthogonal
group is SO(n) = {A ∈ O(3)| detA = 1}. The semi-direct product of GL(n) and R

n is called the affine group:
A(n) = GL(n) ⋉ R

n. Its subgroup SA(n) = SL(n) ⋉ R
n is called the special affine group. The Euclidean group

is E(n) = O(n) ⋉ R
n. Its subgroup SE(n) = SO(n) ⋉ R

n is called the special Euclidean group.

In the paper we consider the action of the affine group A(3) and its subgroups on R
3 by a composition of a

linear transformation and a translation:




x
y
z



 =





a11 a12 a13

a21 a22 a13

a31 a32 a33









x
y
z



+





v1
v2
v3



 . (1)

Definition 2.5. A function f :S → R is called invariant if

f(g · s) = f(s), ∀g ∈ G and ∀s ∈ S (2)

2.2. Prolongation of a group action

A group action (1) on R
3 induces an action on curves γ(t) = (x(t), y(t), z(t)) → γ(t) = (x(t), y(t), z(t)). Our goal

is to obtain invariants that classify curves up to the affine transformation. The classical method of obtaining
such invariants is to prolong the action to the set of derivatives {xi, yi, zi|i = 1..l} of a sufficiently high order:21

x1(t) =
dx(t)

dt
, xi+1(t) =

dxi(t)

dt
and similarly for yi and zi for i > 0. (3)

Definition 2.6. Functions of {x, y, z, xi, yi, zi | i = 1..l} that are invariant under the prolonged action (3) are
called differential invariants of order l.

For Euclidean and affine groups, as well as projective groups, acting on curves in 3D, the two lowest order
invariants are called curvature and torsion, and are classically known in differential geometry.

∗An orbit is a smallest invariant subset. Any invariants subset is the union of orbits.



As noted in the introduction, differential invariants are highly sensitive to noise. Extending the approach of

Ref. 13 to curves in 3D, entails our prolonging the action (1) to N = l(l+1)(l+5)
2 integral variables of order l.

Xijk(t) =

∫ t

0

xiyjzkdx, j + k 6= 0

Yijk(t) =

∫ t

0

xiyjzkdy, i+ k 6= 0 (4)

Zijk(t) =

∫ t

0

xiyjzkdz, i+ j 6= 0

where the integrals are taken along the curve γ(t) and i+ j + k = l.

Let γ(0) = (x(0), y(0), z(0))T , A ∈ GL(3), v ∈ R3 . Following the argument of Proposition 1 of Ref. 13 one
can show that the transformations on R

N+6





x
y
z



 = A





x
y
z



+





v1
v2
v3



 ,





x(0)
y(0)
z(0)



 = A





x(0)
y(0)
z(0)



+





v1
v2
v3



 (5)

Xijk =

∫ t

0

xiyjzkdx and similarly for Yijk and Zijk

induced by (1) satisfy the axioms of a group action, and respect the relations among variables x, y, z, x(0), y(0),
z(0), Xijk, Yijk, Zijk that follow from the integration by parts formula. For instance X010 = x(t)y(t)−x(0)y(0)−
Y100 and X0,1,0 = x(t)y(t) − x(0)y(0) − Y1,0,0. Thus the action (5) restricts to the subvariety of R

N+6 defined
by these relations.

Definition 2.7. Functions of {x, y, z, x(0), y(0), z(0), Xijk, Yijk , Zijk | i+ j+ k = l} that are invariant under the
action (5) are called integral invariants of order l.

We reduce the problem of finding invariants under the action (5) to an equivalent but simpler problem of
finding invariant functions of variables {X,Y, Z,Xi,j,k, Yi,j,k, Zi,j,k | i + j + k = l} under the action of GL(3)
defined by





X
Y
Z



 = A





X
Y
Z



 (6)

Xijk =

∫ t

0

X
i
Y

j
Z

k
dX and similarly for Yijk and Zijk

by introducing new variables
X = x− x(0), Y = y − y(0), Z = z − z(0) (7)

and making the corresponding substitution in the integrals. Invariants with respect to (5) may be obtained from
invariants with respect to (6) by making substitution (7).†

3. INTEGRAL SIGNATURES

In Section 4 we obtain the following two second order integral invariants, which we use to classify curves in 3D
with respect to the special affine transformations.

I1 = n1X + n2Z − n3Y

I2 = 2n1(XY Z
2 − 3Z011X + 3Y Z101 − ZZ110 − 2ZY101) + n2(2XY

2Z + 3XZ020 (8)

− 6ZX020 − 4 Y Z110 − 2 Y Y101) − 2n3(3 Y X101 − 3ZX110 +XZ110 −XY101)

†This reduction by the group of translations can be put in the context of inductive method described in Section 4. We
feel, however, that making this step“upfront” makes the presentation more transparent.



where
n1 = Y Z − 2Z010, n2 = XY − 2 Y100, and n3 = XZ − 2Z100

represent certain areas.

The signature of a curve γ(t) is obtained by first evaluating I1 and I2 on this curve, and by then plotting a
parameterized curve (I1(t), I2(t)) in R

2.

Example 3.1. The signature of a space curve

γ(t) = (sin t− 1/5 cos2 t+ 1/5, 1/2 sin t− cos t+ 1 sin2 t+ cos t− 1),

shown in Fig. 1-a is a plane curve shown on Fig 2-a.
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Figure 1. (a) original curve γ(t) (b) transformed curved γ(t)
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Figure 2. (a) Signatures for γ(t) and γ(t) (b) Their numerical approximations for discretizations of γ(t) and γ(t)

A curve γ(t) is obtained from γ(t) by an affine transformation. As illustrated in Fig 2-a, their signatures
coincide. Fig 2-a shows that the numerical approximations of signatures for discretizations of γ(t) and γ(t) are
very close.



The advantage of signatures is that they depend on neither the parameterization nor on the initial point.
This is in contrast to plotting invariants with respect to a parameter which is dependent on the choice of
parameterization as illustrated in Fig 3.‡
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Figure 3. (a) Invariant I1 for γ(t) (b) I1 for reparameterization of γ with τ =
√

t + 1

A detailed analysis of signatures proposed in this paper is in progress. In particular, we conjecture that,
similarly to the case of differential signatures, integral signatures defined in this paper distinguish equivalence
classes of curves, and that information about the symmetries of the curve can be extracted from the signatures.
Having in mind applications to object recognition, we are performing a quantitative analysis of their sensitivity
to noise in comparison to signatures based on other types of invariants.?

4. DERIVATION OF INVARIANTS

4.1. Cross-section and moving frame map

Building on the works Ref. 22–24, Fels and Olver17 generalized Cartan’s normalization procedure,25 and proposed
a general algorithm for computing invariants. The Fels-Olver algorithm relies on a map ρ:S → G with an
equivariant property:

ρ(g · s) = ρ(s) · g−1, ∀g ∈ G, ∀s ∈ S. (9)

From Theorem 4.4 in Ref. 17, it follows that such map exists if and only if the action of G is free and, in addition,
there exists a global cross-section, i.e a subset K ⊂ S that intersects each orbit Os at a unique point. Indeed,
under the above assumption the map ρ may be defined by the condition ρ(s) ·s ∈ K. Then ρ(s) ·s = ρ(g ·s) ·(g ·s)
is the unique point of the intersection of Os and K. From the freeness it follows that s may be “cancelled” and
hence the condition (9) is satisfied.

If G is a Lie group acting smoothly on R
n and both S ⊂ R

n and K ⊂ S are smooth submanifolds, then R
n-

coordinate components of the projection ι(s) = ρ(s) · s:S → K are smooth invariant functions, called normalized
invariants. Normalized invariants contain a maximal set of functionally independent invariants, and have a
replacement property, which allows to rewrite any invariant in terms of them by simple substitution.17, 26, 27

Although, a global smooth cross-section does not always exist, a local smooth cross-section§ passing through
every point of S may be found for every semi-regular action.¶ The freeness assumption can be also relaxed to

‡Although plotting invariants as a function of the affine arc-length eliminates the dependence on a parameter, it is
more difficult in practice, and the dependence on a choice of the initial point remains.

§A local cross-section is defined on an open subset of U ⊂ S and ∀s ∈ U intersects each connected component of Os∩U

at a unique point.
¶An action of G is called semi-regular if all orbits have the same dimension.



a semi-regularity assumption. With these weaker assumptions the above method can be used to construct local
invariants.17, 27‖

For algebraic groups acting on algebraic varieties, a purely algebraic counterpart of the Fels-Olver construction
was obtained in Ref. 26, 27. This formulation gives rise to a computer-algebra algorithm for constructing a
generating set of rational invariants and for constructing replacement invariants. The latter are algebraic over
the field of rational invariants, and play the same role as normalized invariants in the smooth construction.
The advantage of the algebraic construction is that it avoids a generically non-constructible step of computing
a moving frame map ρ. The algorithms rely on a Gröbner basis computation. The algebraic method can be
combined with the inductive approach described below. In some particular examples, including the 3D example
presented here, the computation based on the moving frame map ρ turns out to be more practical.

When the groupG is of relatively large dimension, computation of invariants by either a geometric or algebraic
approach becomes challenging. In Ref. 16 two modifications of the above method were proposed. These allow to
split the computation into two steps: first invariants of a subgroup A ⊂ G are computed, and then invariants of
the entire group are constructed in terms of those. For the problem at hand, we use one of these modifications,
called the inductive approach, which is applicable when a group factors into a product of two subgroups.

4.2. Inductive approach

Definition 4.1. A group G factors as a product of its subgroups A and B if for any g ∈ G there are a ∈ A and
b ∈ B such that g = ab.

We write G = A · B. If in addition A ∩ B = e, then for each g ∈ G there are unique elements a ∈ A and
b ∈ B such that g = ab.

Provided there is a cross-section KA, containing s, invariant under the action of the subgroup B, it follows
from Lemma 4.7 in Ref. 16 that invariants of G can be constructed from the invariants of A using the following
method.

Inductive method:

1. Restrict the G-action to A. Find a local cross-section KA ⊂ S for the action of A which is invariant under
the action of B.

2. Construct a moving frame map ρA:S → A defined by the condition ρA(s) · s ∈ KA, ∀s ∈ S, by solving the
corresponding equations. Composition of coordinate functions with the projection ι(s) = ρA(s) ·s:S → KA

are invariant with respect to the action of A.

3. Restrict the action of G to the action of its subgroup B on the invariant subset KA and choose a local
cross-section KB ⊂ KA.

4. Construct a moving frame map ρB:KA → B defined by the condition ρB(s) · z ∈ KB , ∀z ∈ KA, by solving
the corresponding equations.

5. The G-moving frame map ρ:S → G is defined by ρ(s) = ρB(ρA(s) · s)ρA, and G-invariants coordinate
components of ρ(s) · s = ρB(ρA(s) · s) · (ρA(s) · s) = ρB(ιA(s)) · ιA(s).

Example 4.2. integral affine invariants for curves in 2D.

To illustrate the inductive approach we start with a simpler 2D case. The standard action of SL(2) =
{(

a11 a12

a21 a22

)

|a22a11 − a21a12 = 1

}

on R
2 prolongs to the integral variables of order 2. It is sufficient to

consider three integral variables Y10 =
∫ t

0 XdY, Y11 =
∫ t

0 XY dY, X11 =
∫ t

0 XY dX . The other 3 second order

‖A function f , defined on an open subset U of S, is a local invariant if ∀s ∈ U there exists an open neighborhood Gs

of e ∈ G s.t. condition (2) is satisfied for all g ∈ Gs.



integral variables are related to those via integration by parts and therefore need not be considered. We obtain
the following free action on an open subset of M = R.

X = a11X + a12Y

Y = a21X + a22Y

Y10 =

∫ t

0

XdY = Y10 + a11a21
X2

2
+ a12a22

Y 2

2
+ a12a21XY

Y11 =

∫ t

0

XY dY (10)

=
a21

2a11X
3

3
− a21X11 + a21a12a22XY

2 + a22a11a21X
2Y + a22Y11 +

a22
2a12Y

3

3

X11 =

∫ t

0

XY dX

=
a11

2a21X
3

3
+ a11X11 + a11a12a22XY

2 − a12Y11 + a12a11a21X
2Y +

a12
2a22Y

3

3

We have a product decomposition SL(2) = B · A, where B =

{(

b11 b12
0 1

b11

)

|b11 > 0

}

and A = SO(2) is a

group of rotations. The intersection B ∩A = {e}, and therefore we can apply the inductive method as follows.

1. We restrict the action (10) to A:

X = cosφX − sinφY

Y = sinφX + cosφY

Y10 = Y10 +
1

2
cosφ sinφ

(

X2 − Y 2
)

− sin2 φXY

Y11 = cosφY11 − sinφX11 (11)

+
1

3
cosφ sinφ

(

sinφX3 + 3 cosφX2Y − 3 sinφXY 2 − cosφY 3
)

X11 = cosφX11 + sinφY11

+
1

3
cosφ sinφ

(

cosφX3 − 3 sinφX2Y − 3 cosφXY 2 + sinφY 3
)

A subset KA defined by conditions, Y = 0, X > 0 serves as a cross-section on the subset of R
5, where

X2 + Y 2 6= 0. Moreover KA is invariant under the restriction of (10) to subgroup B.

2. The corresponding moving frame map ρA(s) =

(

X√
X2+Y 2

Y√
X2+Y 2

− Y√
X2+Y 2

X√
X2+Y 2

)

is obtained by solving the equa-

tion Y = 0 with the condition X > 0. The projection ιA: R5 → KA, obtained by substitution ρA into (11)
produces a point whose coordinates are invariant under the action of SO(2):

XA =
√
X2 + Y 2, YA = 0, Y10A = Y10 − XY

2 ,

Y11A = − 2 Y 2X2−3 XY11−3 Y X11

3
√

X2+Y 2
, X11A = −Y X3−3 XX11−XY 3+3 Y Y11

3
√

X2+Y 2
.

(12)

3. We now restrict the action (10) to the action of a subgroup B on an invariant subset KA. We obtain the
following transformations:∗∗

XA = b11XA, Y10A = Y10A,
Y11A = 1

b 11
Y11A, X11A = b11X11A − b12Y11A.

(13)

∗∗At this step of the construction we treat XA, Y10A, Y11A, X11A as coordinate functions on KA disregarding their
expressions (12) in terms of X, Y, Y10, Y11, X11.



A subset KB ⊂ KA defined by the equations XA = 1, X11A = 0 serves as a cross-section on the subset
of KA, where Y11A 6= 0.

4. This leads to the moving frame map ρB(s) =

(

1
XA

X11A

Y11AXA

0 XA

)

. The projection ιB:KA → KB, defined

by ιB(s) = ρB(s) · s, produces a point with coordinates

XB = 1, Y10B = Y10A, Y11B = XAY11A, X11B = 0

invariant under the B-action (13) on KA.

5. Substitution of (12) produces 2 non-constant independent invariants under the SL(2) action (10).

I1 = Y10 −
XY

2
, I2 = X Y11 + Y X11 −

2

3
Y 2X2 (14)

By considering the effect of scaling on this invariants, we obtain a single GL(2) invariant:

I =
3

4

I2
I2
1

=
2 Y 2X2 − 3XY11 − 3 Y X11

(2Y10 −XY )2

By substituting (7), one obtains an invariant with respect to action of full affine group, equivalent to the one
obtained in.13

4.3. Affine integral invariants for curves in 3D.

We start by considering the action of SL(3) defined by (6) on the integral variables of order 2. Taking
into account the relations which arise from the integration by parts, it is sufficient to consider the follow-
ing 11 integral variables: Z100, Z010, Y100, Z011, Z020, Z101, Z110, Y101X110, X101X020. We therefore obtain a
free action of SL(3) on an open subset of R

14. We have a product decomposition SL(3) = B · A, where

B =











b11 b12 b13
0 b22 b23
0 0 1

b11b22



 |b11 > 0







and A = SO(3) is a group of rotations. The intersection B ∩A = {e} is

trivial. We again follow the steps of the inductive method.

1. We restrict the action (6) to A whose elements can be represented as the product of three rotations:








1 0 0

0 cos(ψ) −sinψ

0 sinψ cosψ

















cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

















cosθ −sinθ 0

sinθ cosθ 0

0 0 1









A subset KA, defined by conditions, Y = 0, Z = 0, Z011 = 0, X > 0 serves as a cross-section on the subset
of R

14, where X2 + Y 2 + Z2 > 0. The cross-section KA is invariant under the action of B.

2. The corresponding moving frame map ρA is obtained by solving the equation Y = 0, Z = 0, Z011 = 0 with
the condition X > 0. Explicitly

cos θ = X√
X2+Y 2

, cosφ =
√

X2+Y 2√
X2+Y 2+Z2

, cosψ =
Z020R√

Z020R

2+4 Z011R

2
,

sin θ = − Y√
X2+Y 2

, sinφ = Z√
X2+Y 2+Z2

, sinψ = −2
Z011R√

Z020R

2+4 Z011R

2
,

(15)

where

Z011R
= − 1

6
√
X2 + Y 2 (X2 + Y 2 + Z2)

(−6X3Z011 + 2X3Y Z2 + 6X2Y Z101 − 6ZX2Y101 − 6XZ011Y
2 + 4Y 3Z2X

+6ZXYX101 − 6XZ2X110 + 3XZYZ020 − 6ZY 2Y101 − 3Z2Y X020 + 6Y 3Z101 − 6 Y 2ZZ110)



and

Z020R
= −1

3

−2 Y 2ZX2 − 3X2Z020 + 3XZX020 + 6Y XZ110 − 6ZYX110 + 6Y 2X101√
X2 + Y 2

√
X2 + Y 2 + Z2

The coordinate components of the projection ιA: R14 → KA, obtained by substitution of ρA(s) into (6),

XA =
√

X2 + Y 2 + Z2, YA = 0, ZA = 0, Z010A =
XY Z − 2XZ010 + 2Y Z100 − 2ZY100

2
√
X2 + Y 2 + Z2

, (16)

Z100A = . . . , Y100A = . . . , Z011A = . . . , Z020A = . . . , Z101A = . . . , Z110A = . . . , Y101A = . . .

are invariant under SO(3) action.††

3. We now restrict the action (6) to the action of a subgroup B on an invariant subset KA. We obtain the
following transformations:

XA = b11XA

Z010A = b22 b33Z010A

Z100A = b11 b33Z100A + b12 b33 Z010A

Y100A = b11 b22 Y100A − b13 b22 Z010A + b11 b23 Z100A + b12 b23Z010A

Z020A = b22
2b33 Z020A

Z101A = b11 b33
2Z101A

Z110A = b33 b11 b22 Z110A + b33 b11 b23 Z101A + b33 b12 b22 Z020A

Y101A = Y101A +
b23
b22

Z101A − b12
2b11

Z020A

A subset KB ⊂ KA defined by equations Z010A = 1, Z100A = 1, Y100A = 1, Z020A = 1, Z110A = 1 is a
cross-section on a subset of KA, where Z020A, Z010A and Z101A are non-zero.

4. The corresponding moving frame map ρB is obtained by solving equations Z010A = 1, Z100A = 1, Y100A =
1, Z020A = 1, Z110A = 1:

b11 = Z010A, b12 = −Z020AZ100A − Z010A

Z020A

, b22 =
Z010A

Z020A

, b23 =
−Z010AZ110A + Z020AZ100A

Z020AZ101A

b13 = −−Z010A
2Z020AZ100A + Z010A

3Z110A − Z020AZ101AZ010A
2Y100A + Z101AZ020A

2

Z020AZ101AZ010A
2

The coordinate components of the projection ρB(s) · s:KA → KB

XB = Z010AXA, Z101B =
Z101AZ

2
020A

Z3
010A

, Y101B =
2Y101AZ010A − 2Z010AZ110A + 3Z020AZ100A

2Z010A

− 1

2

are invariant under the action of B on KA.

5. Substitution of explicit expressions (16) produces 3 non-constant invariants under the action of SL(2). The
expression for the invariant corresponding to Z101B

is complicated and is not presented in this paper. The
invariants corresponding to XB and Y101B + 1

2 are

i1 =
n1X + n2Z − n3Y

4

i2 =
−1

4i1
(2n1(XY Z

2 − 3Z011X + 3Y Z101 − ZZ110 − 2ZY101) + n2(2XY
2Z + 3XZ020

− 6ZX020 − 4 Y Z110 − 2 Y Y101) − 2n3(3 Y X101 − 3ZX110 +XZ110 −XY101))

††Due to space limitation we omit some of the explicit formulae, which unlike the final result are complicated.



Figure 4. Geometric interpretation of term n1

where
n1 = Y Z − 2Z010, n2 = XY − 2 Y100, and n3 = XZ − 2Z100

represent certain areas. In particular, if a curve on Fig. 4 represents the projection of a given space curve
to ZY -plane, then the term n1 is two times the difference of the area under the curve and the area of the
triangle B.

The quotient I = i2
i1

is invariant under GL(3). We used I1 = 4i1 and I2 = −4i1i2 to construct signatures
in Section 3.

5. CONCLUSION

Using the inductive approach to the moving frame construction, we derived integral invariants for 3D curves
transformed by the special and the full affine groups. These invariants are used to construct signatures that
classify curves up to the special affine transformations. Further research includes a detailed study of the properties
of integral signatures for curves in 2D and 3D. From a theoretical perspective this involves proving the separation
properties of integral signatures. We will also investigate the symmetry detection using such signatures. Bearing
in mind applications to computer vision and image processing, we will present a quantitative analysis of the
sensitivity of the integral invariants to noise. Derivation of the integral invariants with respect to the projective
group, as well as the extension of the above methods to surfaces, is a natural but computationally challenging
continuation of the research.
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